
0:Object-Oriented Programming
with [incr Tcl]

0:Building Mega-Widgets
with [incr Tk]

Michael J. McLennan
Bell Labs Innovations for Lucent Technologies

1247 S. Cedar Crest Blvd.
Allentown, PA 18104

mmclennan@lucent.com

Copyright © 1996 Lucent Technologies

ABSTRACT

Applications with short development cycles have the best chance for success in
today’s marketplace. Tcl/Tk provides an interactive development environment
for building Graphical User Interface (GUI) applications with incredible speed.
Tcl/Tk applications look like they were constructed with the Motif toolkit, but
they can be written in a fraction of the time. This is due, in part, to the high-
level programming interface that the Tcl language provides. It is also due to the
interpretive nature of the Tcl language; changes made to a Tcl/Tk application
can be seen immediately, without waiting for the usual compile/link/run cycle.
Developers can prototype new ideas, review them with customers, and deliver a
finished product within a span of several weeks. The finished product will run
on all of the major platforms: Unix, PC Windows, and Macintosh.

But the Tcl language was not designed to support large programming projects.
When Tcl/Tk scripts grow larger than a thousand lines, the code complexity can
be difficult to manage.[INCR TCL] extends the Tcl language to support object-
oriented programming. This allows developers to write high-level building
blocks that are more easily assembled into a finished application. The resulting
code has more encapsulation, and is easier to maintain and extend.[INCR TCL]
is patterned after C++, so for many developers, it is easy to learn.

This memo contains two chapters that will appear in a book published by
O’Reilly and Associates. It provides an overview of[INCR TCL], and shows
how it can be used to support Tcl/Tk applications. It also describes a special
library of base classes called[INCR TK], which can be used to build high-level
user interface components called “mega-widgets”.

3

Chapter1Tcl/Tk Tools

In this Chapter:

• Objects and Classes

• Inheritance

• Namespaces

• Interactive
Development

• Autoloading

• Adding C code to
[INCRTCL] Classes

1
1:Object-Oriented

Programming with
[incr Tcl]

Tcl/Tk applications come together with astounding
speed. You can write a simple file browser in an
afternoon, or a card game like Solitaire within a
week. But as applications get larger, Tcl code
becomes more difficult to understand and maintain.
You get lost in the mass of procedures and global
variables that make up your program. It is hard to
create data structures, and even harder to make reus-
able libraries.

[INCR TCL] extends the Tcl language to support object-oriented programming.
It wasn’t created as an academic exercise, nor to be buzzword-compatible with
the latest trend. It was created to solve real problems, so that Tcl could be used
to build large applications.

[INCR TCL] is fully backward-compatible with normal Tcl, so it will run all of
your existing Tcl/Tk programs. It simply adds some extra commands which let
you create and manipulate objects.

It extends the Tcl language in the same way that C++ extends the base language
C. It borrows some familiar concepts from C++,† so many developers find it
easy to learn. But while it resembles C++, it is written to be consistent with the
Tcl language. This is reflected in its name, which you can pronounce as “incre-
ment tickle” or “inker tickle.” This is the Tcl way of saying “Tcl++”.

† Stanley B. Lippman,C++ Primer (2nd edition), Addison-Wesley, 1991; and Bjarne Stroustrup,The
Design and Evolution of C++, Addison-Wesley, 1994.

Tcl/Tk Tools

4

This chapter shows how [INCR TCL] can be used to solve common programming
problems. As an example, it shows how a tree data structure can be created and
used to build a file browser. Along the way, it illustrates many important
concepts of object-oriented programming, including encapsulation, inheritance,
and composition.

Objects and Classes
I won’t go on for pages about object-oriented programming. You have prob-
ably read about it in other contexts, and there are some really good texts† that
explain it well. But the basic idea is that you create objects as building blocks
for your application. If you are building a kitchen, for example, you might need
objects like toasters, blenders and can openers. If you are building a large
kitchen, you might have many different toasters, but they all have the same char-
acteristics. They all belong to the same class, in this case a class called
Toaster.

Each object has some data associated with it. A toaster might have a certain
heat setting and a crumb tray that collects the crumbs that fall off each time it
toasts bread. Each toaster has its own heat setting and its own crumb count, so
each Toaster object has its own variables to represent these things. In object
speak, these variables are called instance variables or data members. You can
use these instead of global variables to represent your data.

You tell an object to do something using special procedures called methods or
member functions. For example, a Toaster object might have a method called
toast that you use to toast bread, and another method called clean that you use
to clean out the crumb tray. Methods let you define a few strictly limited ways
to access the data in a class, which helps you prevent many errors.

Everything that you need to know about an object is described in its class defini-
tion. The class definition lists the instance variables that hold an object’s data
and the methods that are used to manipulate the object. It acts like a blueprint
for creating objects. Objects themselves are often called instances of the class
that they belong to.

Variables and Methods

Let’s see how objects work in a real-life example. Suppose you want to use the
Tk canvas widget to build a file browser. It might look something like the one

† For example: Grady Booch, Object-Oriented Design, Benjamin/Cummings, 1991; and Timothy
Budd, An Introduction to Object-Oriented Programming, Addison-Wesley, 1991.

Chapter 1: Object-Oriented Programming with [incr Tcl]

5

shown in Figure 1-1. Each entry would have an icon next to the file name to
indicate whether the file is an ordinary file, a directory, or an executable
program. Aligning each icon with its file name is ordinarily a lot of work, but
you can make your job much simpler if you create an object to represent each
icon and its associated file name. When you need to add an entry to the file
browser, you simply create a new object with an icon and a text string, and tell
it to draw itself on the canvas.

We will create a class VisualRep to characterize these objects. The class defini-
tion is contained in the file itcl/tree/visrep.itcl on the CD-ROM that
accompanies this book, and it appears in Example 1-1.

Figure 1-1 Using VisualRep objects to build a file browser.

Example 1-1 The class definition for VisualRep objects.

image create photo default -file default.gif

class VisualRep {
variable canvas
variable icon
variable title

constructor {cwin ival tval} {
 set canvas $cwin
 set icon $ival
 set title $tval
 }

destructor {
 erase
 }

method draw {x y} {
 erase
 $canvas create image $x $y -image $icon -anchor c -tags $this
 set x1 [expr $x + [image width $icon]/2 + 4]

VisualRep
objects

Tcl/Tk Tools

6

All of the [INCR TCL] keywords are shown above in bold type. You use the
class command to define a new class of objects. Inside the class definition is a
series of statements that define the instance variables and the methods for
objects that belong to this class. In this example, each VisualRep object has
three variables: canvas, icon and title. The canvas variable contains the
name of the canvas widget that will display the object. The icon variable
contains the name of a Tk image used as the icon. And the title variable
contains a text string that is displayed next to the icon. Each object also has a
built-in variable named this, which you don’t have to declare. It is automati-
cally defined, and it contains the name of the object.

Each VisualRep object responds to the two methods listed in the class defini-
tion. You can ask the object to draw itself at an (x,y) coordinate on the canvas,
and the icon will be centered on this coordinate. You can also ask the object to
erase itself. Notice that all of the canvas items created in the draw method are
tagged with the name of the object, taken from the built-in this variable. This
makes it easy to erase the object later by deleting all canvas items tagged with
the object name.

The constructor and destructor are special methods that are called automati-
cally when an object is created and destroyed. We’ll talk more about these later.

The methods and variables in one class are completely separate from those in
another. You could create a Book class with a title variable, or a Chalkboard
class with draw and erase methods. Since these members belong to different
classes, they will not interfere with our VisualRep class. It is always obvious
which methods and variables you can use if you think about which object you
are manipulating. Because classes keep everything separate, you don’t have to
worry so much about name collisions, and you can use simpler names in [INCR

TCL] code than you would in ordinary Tcl code.

Methods look a lot like an ordinary Tcl procedures. Each method has a name, a
Tcl-style argument list, and a body. But unlike procedures, methods automati-
cally have access to the variables defined in the class. In the draw method, we
talk to the canvas widget using the name stored in the canvas variable. We
access the icon using $icon, and the title string using $title. There is no need
to declare these variables with anything like the Tcl global statement. They
have been declared once and for all in the class definition.

 $canvas create text $x1 $y -text $title -anchor w -tags $this
 }

method erase {} {
 $canvas delete $this
 }
}

Example 1-1 The class definition for VisualRep objects.

Chapter 1: Object-Oriented Programming with [incr Tcl]

7

The same thing holds true for methods. Within one method, we can treat the
other methods as ordinary commands. In the destructor, for example, we call
the erase method simply by using the command erase. If effect, we are telling
this object (whichever one is being destroyed) to erase itself. In the code
outside of a class, we have to be more specific. We have to tell a particular
object to erase itself.

Having defined the class VisualRep, we can create an object like this:

VisualRep vr1 .canv default "Display this text"

The first argument (vr1) is the name of the new object. The remaining argu-
ments (.canv default "Display this text") are passed along to the
constructor to initialize the object. This might look familiar. It is precisely how
you would create a Tk widget:

button .b -background red -text "Alert"

Here, the first argument (.b) is the name of the new widget, and the remaining
arguments (-background red -text "Alert") are used to configure the
widget. This similarity is no accident. [INCR TCL] was designed to follow the
Tk paradigm. Objects can even have configuration options just like the Tk
widgets. We’ll see this later, but for now, we’ll stick with simple examples.

Once an object has been created, you can manipulate it using its methods. You
start by saying which object you want to manipulate. You use the object name
as a command, with the method name as an operation and the method argu-
ments as additional parameters. For example, you could tell the object vr1 to
draw itself like this:

vr1 draw 25 37

or to erase itself from the canvas like this:

vr1 erase

Again, this might look familiar. It is precisely how you would use a Tk widget.
You might tell a button to configure itself like this:

.b configure -background blue -foreground white

or to flash itself like this:

.b flash

Putting all of this together, we can use VisualRep objects to create the drawing
shown in Figure 1-2.

We need to create five VisualRep objects for this drawing. The first object has
a directory folder icon and the message “[incr Tcl] has:”. The remaining
objects have file icons and various message strings. We can create these objects

Tcl/Tk Tools

8

and tell each one to draw itself on the canvas using the handful of code in
Example 1-2.

Constructors and Destructors

Let’s take a moment to see what happens when an object is created. The
following command:

VisualRep bullet1 .canv file "Objects"

creates an object named “bullet1” in class VisualRep. It starts by allocating
the variables contained within the object. For a VisualRep object, this includes
the variables canvas, icon, and title, as well as the built-in this variable. If
the class has a constructor method, it is automatically called with the
remaining arguments passed as parameters to it. The constructor can set
internal variables, open files, create other objects, or do anything else needed to
initialize an object. If an error is encountered within the constructor, it will
abort, and the object will not be created.

Figure 1-2 Simple drawing composed of VisualRep objects.

Example 1-2 Code used to produce Figure 1-2.

canvas .canv -width 150 -height 120 -background white
pack .canv

image create photo dir1 -file dir1.gif
image create photo file -file file.gif

VisualRep title .canv dir1 "\[incr Tcl\] has:"
title draw 20 20

VisualRep bullet1 .canv file "Objects"
bullet1 draw 40 40

VisualRep bullet2 .canv file "Mega-Widgets"
bullet2 draw 40 60

VisualRep bullet3 .canv file "Namespaces"
bullet3 draw 40 80

VisualRep bullet4 .canv file "And more..."
bullet4 draw 40 100

Chapter 1: Object-Oriented Programming with [incr Tcl]

9

Like any other method, the constructor has a Tcl-style argument list. You can
have required arguments and optional arguments with default values. You can
even use the Tcl args argument to handle variable-length argument lists. But
whatever arguments you specify for the constructor, you must supply those
arguments whenever you create an object. In class VisualRep, the constructor
takes three values: a canvas, an icon image, and a title string. These are all
required arguments, so you must supply all three values whenever you create a
VisualRep object. The constructor shown in Example 1-1 simply stores the
three values in the instance variables so they will be available later when the
object needs to draw itself.

The constructor is optional. If you don’t need one, you can leave it out of the
class definition. This is like having a constructor with a null argument list and a
null body. When you create an object, you won’t supply any additional parame-
ters, and you won’t do anything special to initialize the object.

The destructor method is also optional. If it is defined, it is automatically
called when an object is destroyed, to free any resources that are no longer
needed. An object like bullet1 is destroyed using the “delete object”
command like this:

delete object bullet1

This command can take multiple arguments representing objects to be deleted.
It is not possible to pass arguments to the destructor, so as you can see in
Example 1-1, the destructor is defined without an argument list.

Instance variables are deleted automatically, but any other resources associated
with the object should be explicitly freed. If a file is opened in the constructor,
it should be closed in the destructor. If an image is created in the constructor, it
should be deleted in the destructor. As a result, the destructor usually looks like
the inverse of the constructor. If an error is encountered while executing the
destructor, the “delete object” command is aborted, and the object remains
alive.

For the VisualRep class, the destructor uses the erase method to erase the
object from its canvas. Whenever a VisualRep object is deleted, it disappears.

Pointers

Each object must have a unique name. When we use the object name as a
command, there is no question about which object we are talking to. In effect,
the object name in [INCR TCL] is like the memory address of an object in C++.
It uniquely identifies the object.

Tcl/Tk Tools

10

We can create a “pointer” to an object by saving its name in a variable. For
example, if we think of the objects created in Example 1-2, we could say:

set x "bullet1"
$x erase

The variable x contains the name “bullet1”, but it could just as easily have the
name “bullet2” or “title”. Whatever object it refers to, we use the name $x
as a command, telling that object to erase itself.

We could even tell all of the objects to erase themselves like this:

foreach obj {title bullet1 bullet2 bullet3 bullet4} {
 $obj erase
}

One object can point to another simply by having an instance variable that
stores the name of the other object. Suppose you want to create a tree data struc-
ture. In ordinary Tcl, this is extremely difficult, but with [INCR TCL], you
simply create an object to represent each node of the tree. Each node has a vari-
able parent that contains the name of the parent node, and a variable
children, that contains a list of names for the child nodes. The class definition
for a Tree node is contained in the file itcl/tree/tree1.itcl, and it appears in
Example 1-3.

Notice that when we declared the parent and children variables, we included
an extra "" value. This value is used to initialize these variables when an object
is first created, before calling the constructor. It is optional. If a variable does
not have an initializer, it will still get created, but it will be undefined until the
constructor or some other method sets its value. In this example, we do not

Example 1-3 The class definition for a simple Tree data structure.

class Tree {
 variable parent ""
 variable children ""

 method add {obj} {
 $obj parent $this
 lappend children $obj
 }
 method clear {} {
 if {$children != ""} {
 eval delete object $children
 }
 set children ""
 }
 method parent {pobj} {
 set parent $pobj
 }

 method contents {} {
 return $children
 }
}

Chapter 1: Object-Oriented Programming with [incr Tcl]

11

have a constructor, so we are careful to include initializers for both of the
instance variables.

The Tree class has four methods: The add method adds another Tree object as
a child node. The parent method stores the name of a parent Tree object. The
contents method returns a list of immediate children, and is used to traverse
the tree. The clear method destroys all children under the current node.

Notice that in the clear method, we used the Tcl eval command. This lets us
delete all of the children in one shot. The eval command flattens the list
$children into a series of separate object names, and the delete object
command deletes them. If we had forgotten the eval command, the
delete object command would have misinterpreted the value $children as
one long object name, and it would have generated an error.

We can create a series of Tree objects to represent any tree information that
exists as a hierarchy. Consider the tree shown in Figure 1-3. We can create the
root object “henry” like this:

Tree henry

This allocates memory for the object and initializes its parent and children
variables to the null string. If effect, it has no parent and no children. Since
there is no constructor for this class, construction is over at this point, and the
object is ready to use.

We can add children to this node by creating them:

Tree peter
Tree jane

and by adding them in:

henry add peter
henry add jane

Figure 1-3 Diagram of a family tree.

Tcl/Tk Tools

12

Each of these calls to the add method triggers a series of other statements. We
could draw the flow of execution as shown in Figure 1-4. Each object is drawn
with a piece broken off so that you can see the parent and children variables
hidden inside of it. When we call “henry add peter”, we jump into the
context of the henry object (meaning that we have access to its variables), and
we execute the body of the add method. The first statement tells peter that its
parent is now henry. We jump into the context of the peter object, execute its
parent method, and store the name henry into its parent variable. We then
return to henry and continue on with its add method. We append peter to the
list of henry’s children, and the add operation is complete. Now henry knows
that peter is a child, and peter knows that henry is its parent.

This simple example shows the real strength of [INCR TCL]: encapsulation.
The variables inside each object are completely protected from the outside
world. You cannot set them directly. You can only call methods, which
provide a controlled interface to the underlying data. If you decide next week
to rewrite this class, you can change the names of these variables or you can
eliminate them entirely. You will have to fix the methods in the class, but you
won’t have to fix any other code. As long as you don’t change how the
methods are used, the programs that rely on this class will remain intact.

We can create the rest of the tree shown in Figure 1-3 as follows:

peter add [Tree bridget]
peter add [Tree justin]

Figure 1-4 Execution can flow from one object context to another.

henry add peter

parent

children peter

henry

parent

children

henry

peter
method parent {pobj} {
 set parent $pobj
}

method add {obj} {
 $obj parent $this
 lappend children $obj
}

peter parent henry

Chapter 1: Object-Oriented Programming with [incr Tcl]

13

jane add [Tree vanessa]
jane add [Tree troy]

We have shortened things a bit. The Tree command returns the name of each
new Tree object. We capture the name with square brackets and pass it directly
to the add method.

Generating Object Names

If you are creating a lot of objects, you may not want to think of a name for
each one. Sometimes you don’t care what the name is, as long as it is unique.
Remember, each object must have a unique name to identify it. [INCR TCL] will
generate a name for you if #auto is included as all or part of the object name.
For example, we could add 10 more children to the jane node like this:

for {set i 0} {$i < 10} {incr i} {
 jane add [Tree #auto]
}

Each time an object is created, [INCR TCL] replaces #auto with an automatically
generated name like tree17. If you use a name like “x#autoy”, you will get a
name like “xtree17y”. The #auto part is composed of the class name (starting
with a lower-case letter) and a unique number.

If we use the Tree class together with VisualRep, we can write a procedure to
draw any tree on a canvas widget. We simply traverse the tree, and at each
node, we create a VisualRep object and tell it to draw itself on the canvas. Of
course, we also draw some lines on the canvas connecting each parent to its chil-
dren. We will be creating a lot of VisualRep objects, so having automatically
generated names will come in handy. A complete code example is in the file
itcl/tree/tree1.itcl, but the drawing part appears in Example 1-4.

Example 1-4 A recursive procedure draws the tree onto a canvas widget.

proc draw_node {canvas obj x y width} {
 set kids [$obj contents]
 if {[llength $kids] == 1} {
 set x0 $x
 set delx 0
 } else {
 set x0 [expr $x-0.5*$width]
 set delx [expr 1.0*$width/([llength $kids]-1)]
 }
 set y0 [expr $y+50]

 foreach o $kids {
 $canvas create line $x $y $x0 $y0 -width 2
 draw_node $canvas $o $x0 $y0 [expr 0.5*$delx]

 set x0 [expr $x0+$delx]
 }
 set visual [VisualRep #auto $canvas default $obj]
 $visual draw $x $y

Tcl/Tk Tools

14

We create the canvas and pack it, and then we call draw_node to draw the tree
starting at node henry. Inside draw_node, we use the contents method to get
a list of children for the current node. If there is only one child, we draw it
directly below the current node. Otherwise, we divide up the available screen
width and place the children starting at the x-coordinate $x0, with $delx pixels
between them. We draw a line down to each child’s position, and we draw the
child by calling draw_node recursively. This will draw not only the child, but
all of the children below it as well. We finish up by creating a VisualRep for
the current node. The default argument says to use the default (diamond)
icon, and the $obj argument sets the title string to the object name. We need to
tell this VisualRep to draw itself on the canvas, so we capture its automatically
generated name in the visual variable, and we use this as a pointer to the
object.

A Real Application

We can use our Tree class to build a real application, like a file browser that
helps the user find wasted disk space. The Unix du utility reports the disk usage
for a series of directories, given a starting point in the file system. Its output is
a long list of sizes and directory names that looks like this:

$ du -b /usr/local/itcl
29928 /usr/local/itcl/lib/tcl7.4
...
36343 /usr/local/itcl/man/man1
812848 /usr/local/itcl/man/man3
1416632 /usr/local/itcl/man/mann
2274019 /usr/local/itcl/man
11648898 /usr/local/itcl

The -b option says that directory sizes should be reported in bytes.

It is much easier to understand this output if we present it hierarchically, as
shown in Figure 1-5. If we are looking at the /usr/local/itcl directory, for
example, we can see that it has four subdirectories, and of these, bin is the
biggest. We could double-click on this directory to see a listing of its contents,
or double-click on BACK UP to move back to the parent directory.

We can use a tree to organize the output from the du command. Each node of
the tree would represent one directory. It would have a parent node for its

}

canvas .canv -width 400 -height 200 -background white
pack .canv

draw_node .canv henry 190 50 200

Example 1-4 A recursive procedure draws the tree onto a canvas widget.

Chapter1: Object-Oriented Programming with [incr Tcl]

15

parent directory and a list of child nodes for its subdirectories. The simple
Tree class shown in Example 1-3 will handle this, but each node must also
store the name and the size of the directory that it represents.

We can modify the Tree class to keep track of a name and a value for each node
as shown in Example 1-5.

Figure1-5 A hierarchical browser for the “du” utility.

Example1-5 Tree class updated to store name/value pairs.

class Tree {
 variable name ""
 variable value ""
 variable parent ""
 variable children ""

 constructor {n v} {
 set name $n
 set value $v
 }
 destructor {
 clear
 }

 method add {obj} {
 $obj parent $this
 lappend children $obj
 }
 method clear {} {
 if {$children != ""} {
 eval delete object $children
 }
 set children ""
 }
 method parent {pobj} {
 set parent $pobj
 }

 method get {{option -value}} {
 switch -- $option {
 -name { return $name }
 -value { return $value }
 -parent { return $parent }
 }

Tcl/Tk Tools

16

We simply add name and value variables to the class. We also define a
constructor, so that the name and the value are set when each object is created.
These are required arguments, so when we create a Tree node, the command
must look something like this:

Tree henry /usr/local/itcl 8619141

Actually, the name and value strings could be anything, but in this example, we
are using name to store the directory name, and value to store the directory size.

We have also added a destructor to the Tree so that when any node is
destroyed, it clears its list of children. This causes the children to be destroyed,
and their destructors cause their children to be destroyed, and so on. So
destroying any node causes an entire sub-tree to be recursively destroyed.

If we are moving up and down the tree and we reach a certain node, we will
probably want to find out its name and its value. Remember, variables like
name and value are kept hidden within an object. We can’t access them
directly. We can tell the object to do something only by calling one of its
methods. In this case, we invent a method called get that will give us access to
the necessary information. If we have a Tree node called henry, we might use
its get method like this:

puts "directory: [henry get -name]"
puts " size: [henry get -value]"

The get method itself is defined in Example 1-5. Its argument list looks a little
strange, but it is the standard Tcl syntax for an optional argument. The outer set
of braces represents the argument list, and the inner set represents one argu-
ment: its name is option, and its default value (if it is not specified) is
“-value”. So if we simply want the value, we can call the method without any
arguments, like this:

puts " size: [henry get]"

The get method merely looks at its option flag and returns the appropriate
information. We use a Tcl switch command to handle the various cases. Since
the option flag will start with a “-”, we are careful to include the “--” argu-
ment in the switch command. This tells the switch that the very next argument
is the string to match against, not an option for the switch command itself.

 error "bad option \"$option\""
 }
 method contents {} {
 return $children
 }
}

Example 1-5 Tree class updated to store name/value pairs.

Chapter 1: Object-Oriented Programming with [incr Tcl]

17

With a new and improvedTree class in hand, we return to building a browser
for the Unixdu utility. If you are not used to working with tree data structures,
this code may seem complicated. But keep in mind that it is the example
itself—not [INCR TCL]—that adds the complexity. If you don’t believe me, try
solving this same problem without[INCR TCL]!

We create a procedure calledget_usage to load the disk usage information for
any directory. This is shown in Example1-6.

We simply pass it the name of a directory, and it runs thedu program and
creates a tree to store its output. We use the Tclexec command to execute the
du program, and we split its output into a list of lines. We traverse backward
through this list, starting at the root directory, and working our way downward
through the file hierarchy because thedu program puts the parent directories
after their children in its output. Wescan each line to pick out the directory
name and size, ignoring any lines have the wrong format. We create a new
Tree object to represent each directory. We don’t really care about the name of
the Tree object itself, and we don’t want to make up names like “henry” and
“jane”, so we use#auto to get automatically generated names. Once eachTree
node has been created, we add it into the node for its parent directory.

Finding the node for the parent directory is a little tricky. We can use the Tcl
“file dirname” command to get the name of the parent directory, but we must
figure out whatTree object represents this directory. We could scan through

Example 1-6 Disk usage information is stored in a tree.

set root ""
proc get_usage {dir} {
 global root

 if {$root != ""} {
 delete object $root
 }
 set parentDir [file dirname $dir]
 set root [Tree #auto $parentDir ""]
 set hiers($parentDir) $root

 set info [split [exec du -b $dir] \n]
 set last [expr [llength $info]-1]

 for {set i $last} {$i >= 0} {incr i -1} {
 set line [lindex $info $i]

 if {[scan $line {%d %s} size name] == 2} {
 set hiers($name) [Tree #auto $name $size]

 set parentDir [file dirname $name]
 set parent $hiers($parentDir)
 $parent add $hiers($name)
 }
 }
 return $root
}

Tcl/Tk Tools

18

the entire tree looking for it, but that would be horribly slow. Instead, we create
a lookup table using an array called hiers that maps a directory name to its
corresponding Tree object. As we create each object, we are careful to store it
in this array so it can be found later when its children are created. Figure 1-6
shows the array and how the values relate to the directory structure we started
with.

Since we traverse backward through the du output, parent Tree nodes will
always be created and entered into the hiers array before their child nodes.
The only exception is the parent for the very first node. It will not appear in the
output from du, so we have to create it ourselves to get everything started. We
call this the root node, and we save its name in a global variable called root.
The next time we call get_usage, we can destroy the old tree simply by
destroying the root node, and then start a new tree by creating a new root node.

We can put all of this together in an application like the one shown in Figure 1-
5. A complete example appears in the file itcl/tree/tree2.itcl, so I will not show
all of the code here. But it works something like this. When the user types a
directory name at the top of this application, we call the procedure get_usage
to execute du and build a tree containing the output. We then call another proce-
dure show_usage to display the root object in a listbox. The code for
show_usage appears in Example 1-7.

We start by clearing the listbox and clearing any elements that might have been
selected. If this node has a parent, we add the BACK UP element at the top of
the listbox. Double-clicking on this element will invoke show_usage for the
parent directory, so you can move back up in the hierarchy. We use the

Figure 1-6 Finding directories in a tree of disk usage information.

...

tree2

tree3

...

tree4

...

tree5

tree1

/usr/local tree1

/usr/local/itcl tree2

/usr/local/itcl/bin tree3

/usr/local/itcl/lib tree4

/usr/local/itcl/man tree5

array hiers:

tree1

variable root:

... ...

Chapter 1: Object-Oriented Programming with [incr Tcl]

19

contents method to scan through the list of child nodes, and for each of these
nodes, we add an element showing the directory size and its name. Double-
clicking on any of these elements will invoke show_usage for their node, so
you can move down in the hierarchy. We use a constant-width font for the
listbox, and we format each line with the Tcl format command, to make sure
that size and name fields align properly as two columns.

Notice that as we create each element, we are careful to build an array called
lbox which maps the element number to a Tree node. Later on when we get a
double-click, we can use this array to figure out which Tree node to show. We
simply add a binding to the listbox like this:

bind .display.lbox <Double-ButtonPress-1> {
 set index [.display.lbox nearest %y]
 show_usage $lbox($index)
 break
}

When the double-click occurs, the %y field is replaced with the y-coordinate of
the mouse pointer, and the listbox nearest operation returns the number of the
element nearest this position. We convert this to the corresponding Tree object
using the lbox array, and then use show_usage to display the information for
that node. Normally, the double-click would also be handled as another ordi-
nary button press event, but we are careful to avoid this by breaking out of any
further event processing.

Without the Tree class, this application would have been considerably more
difficult to write. [INCR TCL] solves the problem by providing a way to create
new data structures. Data structures are encapsulated with a well-defined set of

Example 1-7 The contents of any Tree node can be displayed in a listbox.

proc show_usage {obj} {
 global root lbox

 catch {unset lbox}
 .display.lbox delete 0 end
 .display.lbox selection clear 0 end

 set counter 0

 if {[$obj get -parent] != ""} {
 .display.lbox insert end " <- BACK UP"
 set lbox($counter) [$obj get -parent]
 incr counter
 }

 foreach kid [$obj contents] {
 set name [$kid get -name]
 set size [$kid get -value]
 .display.lbox insert end [format "%9d %-50s" $size $name]
 set lbox($counter) $kid
 incr counter
 }
}

Tcl/Tk Tools

20

methods to manipulate them. This naturally supports the creation of libraries.
A generic component like the Tree class can be written once, and reused again
and again in many different applications.

Interface versus Implementation

As classes get more complicated, and as method bodies get longer, the class
definition becomes more difficult to read. Finding important information, like
the method names and argument lists, is like looking for a needle in a haystack
of [INCR TCL] code. But a method body does not have to be included with the
method declaration. Class definitions are much easier to read if the bodies are
defined elsewhere, using the body command. For example, our Tree class can
be rewritten as shown in Example 1-8.

Example 1-8 Separating the Tree class interface from its implementation.

class Tree {
 variable name ""
 variable value ""
 variable parent ""
 variable children ""

 constructor {n v} {
 set name $n
 set value $v
 }
 destructor {
 clear
 }

 method add {obj}
 method clear {}
 method parent {pobj}
 method get {{option -value}}
 method contents {}
}

body Tree::add {obj} {
 $obj parent $this
 lappend children $obj
}
body Tree::clear {} {
 if {$children != ""} {
 eval delete object $children
 }
 set children ""
}
body Tree::parent {pobj} {
 set parent $pobj
}

body Tree::get {{option -value}} {
 switch -- $option {
 -name { return $name }
 -value { return $value }
 -parent { return $parent }

Chapter 1: Object-Oriented Programming with [incr Tcl]

21

Since the body commands appear outside of the class definition, we cannot use
simple method names like add. Remember, we could have other classes that
also have an add method. Outside of the class, we must use a full name like
Tree::add to identify the method. A class name followed by “::” characters is
called a scope qualifier. You can add this to any method name or variable name
to clear up ambiguities.

The class definition establishes once and for all what methods are available, and
how they are used. Whatever arguments you give when you declare a method,
you must use the same arguments later when you define the method body. For
example, when we declared the Tree::add method, we said that it takes one
argument named obj. Later, when we defined the body, we used the same argu-
ment list. When we declared the Tree::contents method, we gave it a null
argument list. Again, when we defined the body, we repeated the null argument
list. If you make a mistake and the argument lists do not match, the body
command will report the error.

It turns out that the argument lists don’t have to match letter for letter, but they
must match in meaning. The argument names can change, but the argument
lists must have the same number of required arguments, and all optional argu-
ments must have the same default values. For example, when we declared the
Tree::get method, we said that it has one argument named option with a
default value “-value”. When we define the body we must still have one argu-
ment with a default value “-value”, but its name could be anything, like this:

body Tree::get {{new -value}} {
 switch -- $new {
 ...
 }
}

If you use the special args argument when you declare a method, you can
replace it with other arguments when you define the method body. The args
argument represents variable argument lists, so it acts like a wildcard when the
argument lists are compared by the body command.

If you want to completely suspend this consistency check, you can simply leave
the argument list off when you declare the method in the class definition. The
body command will have no argument list to compare against, so it will use
whatever argument list you give it.

 }
 error "bad option \"$option\""
}
body Tree::contents {} {
 return $children
}

Example 1-8 Separating the Tree class interface from its implementation.

Tcl/Tk Tools

22

Since the constructor and destructor declarations have a slightly different
syntax, their bodies must be included in the class definition. However, you can
declare them with null bodies, and redefine the bodies later using the body
command. If you do this, the argument list for the constructor must match what-
ever appears in the class definition, and the argument list for the destructor must
always be null.

The class command defines the interface for a class, and subsequent body
commands define the implementation. Separating the interface from the imple-
mentation not only makes the code easier to read, but as we will see below, it
also supports interactive development.

Protection Levels: Public and Private

Usually, the class methods are the public part of an object, and the class vari-
ables are kept hidden inside. But what if you want to keep a method hidden for
internal use? In our Tree class, for example, the parent method is used inter-
nally to tell a child that it has a new parent. If it is exposed, someone using the
Tree class might be tempted to call it, and they could destroy the integrity of
the tree. Or consider the opposite problem: What if you want to allow access
to a variable? In our Tree class, the name and value variables are kept hidden
within an object. We added a get method so that someone using the class could
access these values, but there is a better way to handle this.

You can use the public and private commands to set the protection level for
each member in the class definition. For example, we can use these commands
in our Tree class as shown in Example 1-9.

Example 1-9 Adding protection levels to the Tree class.

class Tree {
public variable name ""
public variable value ""

private variable parent ""
private variable children ""

 constructor {args} {
 eval configure $args
 }
 destructor {
 clear
 }

public method add {obj}
public method clear {}
private method parent {pobj}

public method back {}
public method contents {}

}

Chapter 1: Object-Oriented Programming with [incr Tcl]

23

Any member can be accessed by methods within the same class, but only the
public members are available to someone using the class. Since we declared the
parent method to be private, it will not be visible to anyone outside of the class.

Each class has built-in configure and cget methods that mimic the behavior of
Tk widgets. The configure method provides access to an object’s attributes,
and the cget method returns the current value for a particular attribute. Any
variable declared to be public is treated as an attribute that can be accessed with
these methods. Just by declaring the name and value variables to be public, for
example, we can say:

Tree henry
henry configure -name "Henry Fonda" -value "great actor"
puts " name: [henry cget -name]"
puts "value: [henry cget -value]"

Just like Tk, the attribute names have a leading “-” sign. So if the variable is
called name, the attribute is -name.

You can also set the attributes when you create an object, as long as you define
the constructor as shown in Example 1-9. For example, we can say:

Tree henry -name "Henry Fonda" -value "great actor"

The extra arguments are captured by the args argument and passed along to the
configure method in the constructor. The eval command is needed to make
sure that the args list is not treated as a single argument, but as a list of option/
value pairs. It is a good idea to write your constructor like this. It mimics the
normal Tk behavior, and it lets someone using the class set some of the
attributes, and leave others with a default value.

Now that we know about the built-in cget method, our get method is obsolete.
We have removed it from the class definition in Example 1-9, in favor of a back
method that can be used to query the parent for a particular node.

Since anyone can change a public variable by configuring it, we need a way to
guard against bad values that might cause errors. And sometimes when an
option changes, we need to do something to update the object. Public variables
can have some extra code associated with them to handle these things. When-
ever the value is configured, the code checks for errors and brings the object up
to date. As an example, suppose we add a -sort option to the Tree class, to
indicate how the contents of each node should be sorted. Whenever the -sort
option is set, the code associated with it could reorder the child nodes. We
could update the Tree class to handle sorting as shown in Example 1-10.

We add a -sort option simply by adding a public variable called sort. Its
initial value is "", which means that by default, sorting is turned off. We can

Tcl/Tk Tools

24

add some code to this variable in the class definition, right after its default
value. Or we can define it later with a configbody command. The
configbody command is just like the body command, but it takes two argu-
ments: the name of the variable, and the body of code. There is no argument
list for a variable, as you would have for a method. In this example, we use the
configbody command near the end to define the code for the sort variable.
Whenever the -sort option is configured, we call the reorder method to
reorder the nodes.

Example 1-10 Tree class with a -sort option.

class Tree {
 public variable name ""
 public variable value ""

 public variable sort ""
 private variable lastSort ""

 private variable parent ""
 private variable children ""

 constructor {args} {
 eval configure $args
 }
 destructor {
 clear
 }

 public method add {obj}
 public method clear {}
 private method parent {pobj}

 public method back {}
 public method contents {}
 private method reorder {}
}

...

body Tree::add {obj} {
 $obj parent $this
 lappend children $obj
 set lastSort ""
}
body Tree::contents {} {
 reorder
 return $children
}

body Tree::reorder {} {
 if {$sort != $lastSort} {
 set children [lsort -command $sort $children]
 }
 set lastSort $sort
}

configbody Tree::sort {
 reorder
}

Chapter 1: Object-Oriented Programming with [incr Tcl]

25

If there are a lot of nodes, reordering them can be expensive. So we try to avoid
sorting whenever possible. We have a variable called lastSort that keeps
track of the last value for the -sort option, which is the name of some sorting
procedure, as we’ll see below. We can call the reorder method as often as we
want, but it will reorder the nodes only if the -sort option has really changed.

We also set things up so that the nodes will be reordered properly if a new node
is added. We could just reorder the list each time a node is added, but that
would be expensive. Instead, we reorder the list when someone tries to query it
via the contents method. Most of the time, the list will already be sorted, and
the reorder method will do nothing. Whenever we add a node in the add
method, we reset the value of lastSort to "", so that the next call to contents
will actually reorder the nodes.

The configure method automatically guards against errors that occur when an
option is set. For example, if we say:

Tree henry
henry configure -sort bogus_sort_proc -value 1

the configure method finds the public variable sort and sets it to the value
bogus_sort_proc. Then it looks for code associated with this variable and
executes it. In this case, it calls the reorder method to reorder the nodes using
the procedure bogus_sort_proc. If this causes an error, the variable is auto-
matically reset to its previous value, and the configure command aborts,
returning an error message. Otherwise, it continues on with the next option, in
this case handling the -value option.

Let’s take a look at how the -sort option is actually used. In the reorder
method, the sort value is given to the Tcl lsort command to do the actual
sorting. The lsort command treats this as a comparison function. As it is
sorting the list, it calls this function again and again, two elements at a time, and
checks the result. The function should return “+1” if the first element is greater
than the second, “-1” if the first is less than the second, and “0” if they are
equal. The lsort command orders the two elements accordingly.

For example, if we want an alphabetical listing of Tree objects, we could write
a function like this to compare the -name options:

proc cmp_tree_names {obj1 obj2} {
 set val1 [$obj1 cget -name]
 set val2 [$obj2 cget -name]
 return [string compare $val1 $val2]
}

and we could tell a particular Tree object like henry to use this:

henry configure -sort cmp_tree_names

Tcl/Tk Tools

26

Its children would then be listed alphabetically. If we wanted a value-ordered
list, we could write a function like cmp_tree_values to compare the -value
attributes, and use that function as the -sort option.

We can put all of this together in a new and improved du browser, as shown in
Figure 1-7. A complete code example appears in the file itcl/tree/tree5.itcl, but
it works like this. When the user clicks on a radiobutton to change the sorting
option, we configure the -sort option for the node being displayed, query its
children, and update the listbox.

Common Variables and Procedures

Sometimes it is necessary to have variables that do not belong to any particular
object, but are shared among all objects in the class. In C++, they are referred
to as static data members. In [INCR TCL], they are called common variables.

We can see the need for this in the following example. Suppose we improve
our du application to have a graphical display like the one shown in Figure 1-8.
Each file name has an icon next to it. We could use a canvas widget in place of
a listbox, and draw each entry on the canvas with a VisualRep object, as we did
in Example 1-2.

In this example, we will take things one step further. We set up the browser so
that when you click on a file, it becomes selected. It is highlighted with a gray
rectangle, and its usage information is displayed in a label at the bottom of the
application.

We can fix up our VisualRep class to do most of the work for us. We will add
select and deselect methods, so that each VisualRep object will know
whether or not it is selected, and will highlight itself accordingly. A complete

Figure1-7 An improved “du” browser with radiobuttons to control sorting.

Chapter1: Object-Oriented Programming with [incr Tcl]

27

code example appears in the file itcl/tree/tree6.itcl, but the VisualRep class
itself appears in Example 1-11.

We have made a lot of improvements on the VisualRep class presented in
Example 1-1. We still need to keep track of the canvas containing the Visu-

Figure1-8 An improved “du” browser with a graphical display.

Example1-11 An improved VisualRep class with select/deselect methods.

image create photo defaultIcon -file default.gif

class VisualRep {
 public variable icon "defaultIcon"
 public variable title ""

 private variable canvas ""

 constructor {cwin args} {
 set canvas $cwin
 if {![info exists selectedObjs($canvas)]} {
 set selectedObjs($canvas) ""
 }
 eval configure $args
 }
 destructor {
 deselect
 $canvas delete $this
 }

 public method draw {ulVar midVar}
 public method select {}
 public method deselect {}

 public method canvas {args}

 private common selectedObjs
 public proc clear {canv}
 public proc selected {canv}
}

Tcl/Tk Tools

28

alRep, so we still have a private canvas variable. But we have added the
public variables icon and title so that we can treat the icon image and the title
string as configuration options. We also changed the constructor so that the
canvas widget must be specified, but everything else is optional. If we create a
VisualRep object like this:

canvas .display.canv
VisualRep vr1 .display.canv -title "/usr/local/lib"

we get the default icon with the title “/usr/local/lib”. The constructor saves
the canvas name in the canvas variable, does something with the
selectedObjs array that we’ll talk more about below, and then does the usual
“eval configure $args” to handle the configuration options.

We also changed the way we use the draw method. We won’t show the imple-
mentation here—you can check file tree/tree6.itcl for details—but this is how it
works. Instead of a simple (x,y) coordinate, we pass in the names of two vari-
ables. These are used by the draw method, and then modified to return some
drawing information. The first argument is an array representing the upper-left
corner for the VisualRep object. If we have a VisualRep object called vr1 and
we want its upper-left corner at the coordinate (25,37), we might call the draw
method like this:

set ul(x) 25
set ul(y) 37
vr1 draw ul midpt

Before it returns, the draw method modifies the y coordinate in the ul array so
that it points to the next position, immediately below the VisualRep object that
we have just drawn. This makes it easy to draw a list of VisualRep objects on
the canvas, even if their icons are different sizes. The draw method also stores
the x and y coordinates for the midpoint of the icon in the midpt variable. This
will come in handy for another example that we’ll see later in this chapter.

As we said before, we have also added select and deselect methods to
support file selection. When you click on a file in the browser, we call the
select method for its VisualRep. Thus, if you click on a file that has a
VisualRep named vr1, we call its select method like this:

vr1 select

the object would be highlighted with a gray rectangle. If we call the deselect
method like this:

vr1 deselect

Chapter 1: Object-Oriented Programming with [incr Tcl]

29

it would go back to normal. In theory, we could select as many objects as we
want simply by calling their select methods. This might be useful in a file
browser that allows many files to be moved, copied or deleted at once.

When multiple objects can be selected, we need to keep a list of all the
VisualRep objects that are selected. But each VisualRep object keeps track of
itself, and knows nothing about other objects in the class. Somewhere we have
to keep a master list of selected objects. We want something like a global vari-
able, but we want to keep it protected within the class, where it is actually used.
In this case, we want a common variable.

We create a common variable called selectedObjs, as shown near the bottom
of Example 1-11. We declare it to be private so that it can be accessed only
within the class. Instead of keeping one master list with all the VisualRep
objects that are selected, we keep a separate list for each canvas. That way, we
can find out later what objects are selected on a particular canvas. To do this,
we treat the selectedObjs variable as an array, with a different slot for each
canvas. Whenever we create a VisualRep object, we make sure that a slot
exists for its associated canvas, and if not, we create one. This is handled by
some code in the constructor.

We handle the selection of a VisualRep object like this:

body VisualRep::select {} {
 $canvas itemconfigure $this-hilite -fill LightGray

 if {[lsearch $selectedObjs($canvas) $this] < 0} {
 lappend selectedObjs($canvas) $this
 }
}

The first statement turns on the gray rectangle on the canvas. In the draw
method, we make an invisible rectangle tagged with the name $this-hilite,
so when we want it to appear, we simply change its fill color. Next, we check
to see if this object appears on the list of selected objects for its canvas. If not,
we add it to the list.

Notice that we can access the selectedObjs variable without declaring it with
anything like the Tcl global command. It has already been declared in the
class definition, so it is known by all methods in the class.

We handle the de-selection like this:

body VisualRep::deselect {} {
 $canvas itemconfigure $this-hilite -fill ""

 set i [lsearch $selectedObjs($canvas) $this]

Tcl/Tk Tools

30

 if {$i >= 0} {
 set selectedObjs($canvas) [lreplace $selectedObjs($canvas) $i $i]
 }
}

We turn off the gray rectangle by making its fill color invisible. Then we find
the object on the list of selected objects, and we remove it from the list.

At this point, we know which VisualRep objects are selected, but we still
haven’t answered our question: What if someone using the class wants to get a
list of all the VisualRep objects that are selected? Remember, the
selectedObjs variable is private. It cannot be accessed outside of the class.
We did this on purpose to prevent anyone else from tampering with it.

One way to solve this problem is to add a method called selected which
returns a list of objects that are selected on a particular canvas. After all, a
method has access to things inside the class. This would work, but then each
time we wanted to use the method, we would need to find an object to talk to.
For example, we might ask an object named vr1 like this:

set objlist [vr1 selected .display.canv]

This is awkward, and there is a better way to handle it. We need a function that
belongs to the class as a whole. In C++, this is called a static member function.
In [INCR TCL], it is called a procedure or proc. Class procedures are just like
ordinary Tcl procedures, but they reside within the class, so their names won’t
conflict with other procedures in your application.

A procedure is declared with the proc command, as shown at the bottom of
Example 1-11. In many respects, it looks like a method. But a procedure
belongs to the class as a whole. It doesn’t know about any specific object, so it
doesn’t have access to instance variables like icon, title and canvas. It has
access only to common variables.

The advantage of using a procedure is that it can be called like this:

set objlist [VisualRep::selected .display.canv]

Since we are calling this from outside of the class, we have to use the full name
VisualRep::selected. But we do not have to talk to a specific object. In
effect, we are talking to the class as a whole, asking for the objects that are
selected on a particular canvas. The implementation of this procedure is fairly
trivial:

Chapter 1: Object-Oriented Programming with [incr Tcl]

31

body VisualRep::selected {canv} {
 if {[info exists selectedObjs($canv)]} {
 return $selectedObjs($canv)
 }
 return ""
}

We simply look for a value in the selectedObjs array, and return that list.

Procedures are also useful when you want to operate on several objects at once,
or perhaps on the class as a whole. For example, we can add a clear procedure
to deselect all of the VisualRep objects on a particular canvas. We might use
the procedure like this:

VisualRep::clear .display.canv

and it is implemented like this:

body VisualRep::clear {canv} {
 if {[info exists selectedObjs($canv)]} {
 foreach obj $selectedObjs($canv) {
 $obj deselect
 }
 }
}

It simply finds the list of objects that are selected on the canvas, and tells each
one to deselect itself.

Inheritance
Object-oriented systems provide a way for one class to borrow functionality
from another. One class can inherit the characteristics of another, and add its
own unique features. The more generic class is called a base class, and the more
specialized class is called a derived class. This technique leads to a style of
programming-by-differences, and helps to organize code into cohesive units.
Without inheritance, object-oriented programming would be little more than a
data-centric view of the world.

Single Inheritance

We can use our Tree class to build a regular file browser like the one shown in
Figure 1-9. You enter a directory name at the top of the browser, and it lists the
files and directories at that location. Directories are displayed with a trailing “/”
character, and files are displayed along with their size in bytes. If you double-
click on a directory name, the browser displays that directory. If you double-
click on BACK UP, you go back to the parent directory.

Tcl/Tk Tools

32

We could build a tree to represent all of the files on the file system and display
it in this browser, just like we did for the du application. But instead of
spending a lot of time to build a complete tree, we should start with a single
node. When the user asks for the contents of a directory, we will look for files
in that directory and add some nodes to the tree. With this scheme, we can
bring up the file browser quickly and populate the tree as we go along.

We could add a little extra functionality to our Tree class to support the file
system queries, but having a generic Tree class is useful for many different
applications. Instead, it is better to create a separate FileTree class to repre-
sent the file system, and have it inherit the basic tree behavior from Tree.
Inheritance relationships are often described as is-a relationships. If FileTree
inherits from Tree, then a FileTree is-a Tree, but with a more specialized
behavior. The relationship between these classes can be diagramed using the
OMT notation† as shown in Figure 1-10.

† James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and William Lorensen, Ob-
ject-Oriented Modeling and Design, Prentice-Hall, 1991.

Figure 1-9 A simple file browser built with the FileTree class.

Figure 1-10 Diagram of the relationship between the Tree base class and its FileTree
specialization.

Tree

FileTree

is-a

Chapter 1: Object-Oriented Programming with [incr Tcl]

33

The file itcl/tree/tree7.itcl contains a complete code example for the file
browser, but the FileTree class is shown in Example 1-12. The inherit state-
ment brings in all of the characteristics from the base class Tree. Because of
this statement, the FileTree automatically acts like a tree. It keeps track of its
parent and its children, and it has all of the usual Tree methods including add,
contents, back and clear. It also has the configuration options -name,
-value and -sort.

In the FileTree class, we redefine the contents method. When you ask for the
contents of a FileTree node, we invoke another method called populate
which automatically scans the file system and creates child nodes. After we
have populated the node, we use the usual Tree::contents method to return
the list of children.

Notice that we are careful to say Tree::contents. Whenever the base class
and the derived class both have a method with the same name, you need to
include a scope qualifier like this to avoid ambiguity. If you use a simple,
unqualified name like contents, you will get the most-specific implementation
for the object. For a FileTree object, the name contents means

Example 1-12 The FileTree class inherits from Tree.

class FileTree {
 inherit Tree

 public variable procreate ""

 private variable file ""
 private variable mtime 0

 constructor {fname args} {
 if {![file exists $fname]} {
 error "file not found: $fname"
 }
 set file $fname
 eval configure $args
 }

 public method contents {}
 private method populate {}
}

body FileTree::populate {} {
 if {[file mtime $file] != $mtime} {
 clear
 foreach f [glob -nocomplain $file/*] {
 add [uplevel #0 $procreate $f]
 }
 set mtime [file mtime $file]
 }
}
body FileTree::contents {} {
 populate
 return [Tree::contents]
}

Tcl/Tk Tools

34

FileTree::contents. If you want some other version of the method, you
must use a qualified name like Tree::contents.

When an object gives you the most-specific implementation of a method, the
method is said to be virtual. This is a fundamental feature of object-oriented
programming. It lets you treat all the objects in a class the same way, but it lets
specialized objects react in their own specialized manner. For example, all
Tree objects have a contents method that returns a list of child nodes. So you
can get the contents of either an ordinary Tree object or a FileTree object.
When you get the contents of an ordinary Tree object, it simply returns a list of
object names. But when you get the contents of a FileTree object, it will look
for files and automatically create the child nodes before returning their names.
You don’t have to remember what kind of tree object you’re talking to. You
simply call the contents method, and each object does the right thing.

This is true even when you call a method from a base class context. Suppose
for a moment that we had defined the clear method in the Tree base class like
this:

body Tree::clear {} {
 set objs [contents]
 if {$objs != ""} {
 eval delete object $objs
 }
 set children ""
}

Instead of using the children variable directly, we have used the contents
method to query the list of children. When you clear an ordinary Tree object, it
would use Tree::contents to get the list of children. This simply returns
$children, so it looks as though nothing has changed. But when you clear a
FileTree object, it would use FileTree::contents to get the list of children.
It would look for files and automatically create the child nodes, and then turn
right around and delete them. In this case, using the contents method may be
a dumb idea. But it does illustrate an important point: The methods that you
call in a base class use the specialized behaviors that you provide later on for
derived classes. Again, each object does the right thing depending on its type.

We set up the constructor so that you cannot create a FileTree object without
saying what file or directory it represents. You might create a FileTree object
like this:

FileTree barney /usr/local/lib -name "local libraries"

The first argument (/usr/local/lib) is assigned to the fname parameter. The
constructor makes sure that the file exists, and then copies the name to the file

Chapter 1: Object-Oriented Programming with [incr Tcl]

35

variable. If the file is not found, the constructor returns an error, and the object
creation is aborted.

The remaining arguments (-name "local libraries") are treated as configu-
ration options. They are absorbed by the args parameter, and they are applied
by calling the configure method at the bottom of the constructor. Remember,
a FileTree is-a Tree, so it has options like -name and -value.

When we query the contents of a FileTree node, it is automatically populated.
The populate method treats the file name as a directory and uses the glob
command to query its contents. We create a new FileTree object for each file
in the directory and add it to the tree using the add method. Once a node has
been populated, we save the modification time for its file in the mtime variable.
We can call populate as often as we like, but the node will not be re-populated
unless the modification time changes.

Each FileTree object populates itself by adding new FileTree objects as child
nodes. We’ll call this process procreation. We could create the offspring
directly within the populate method, but this would make it hard to use the
same FileTree in lots of different file browsers. For example, one file browser
might set the -value option on each FileTree object to store the size of the
file, so files could be sorted based on size. Another might set the -value option
to store the modification time, so files could be sorted by date. We want to
allow for both of these possibilities (and many more) when we create each
FileTree object.

One solution is to add a procreation method to the FileTree class. The
populate method would call this whenever it needs to create a FileTree
object. We could have lots of different derived classes that overload the procre-
ation method and create their offspring in different ways. This approach works
fine, but we would probably find ourselves creating lots of new classes simply
to override this one method.

Instead, let’s think for a moment about the Tk widgets. You may have lots of
buttons in your application, but they all do different things. Each button has a
-command option that stores some code. When you push a button, its -command
code gets executed.

In the same manner, we can add a -procreate option to the FileTree class.
Whenever a FileTree object needs to procreate, it calls whatever procedure
you specify with the -procreate option, passing it the file name for the child
object. This is what we do in the populate method, as you can see in
Example 1-12.

Tcl/Tk Tools

36

Whenever you have an option that contains code, you have to be careful how
you execute the code. We could use the eval command to execute the procre-
ation code, but it might be more than just a procedure name. For all we know, it
could be a whole script of code. If it sets any variables, we don’t want to affect
variables inside the populate method by accident. Instead, we use
“uplevel #0” to evaluate the command at the global scope, outside of the
FileTree class. If it accidentally sets a variable like file, it will be a global
variable called file, and not the private variable file that we can access inside
the populate method. We will explore scoping issues like this in more detail
later in this chapter. But for now, just remember to use “uplevel #0” to eval-
uate any code passed in through a configuration option.

We can tell a FileTree object like barney to procreate with a custom proce-
dure like this:

barney configure -procreate create_node

When barney needs to procreate, it calls create_node with the child’s file
name as an argument. This in turn creates a FileTree object for the file, config-
ures options like -name, -value and -sort, and returns the name of the new
object. For example, we could use a procedure like this to set the file modifica-
tion time as the value for each node:

proc create_node {fname} {
 set obj [FileTree #auto $fname -name "$fname"]
 $obj configure -value [file mtime $fname]
 return $obj
}

We can use all of this to build the file browser shown in Figure 1-9. Again, the
file itcl/tree/tree7.itcl contains a complete code example, but the important parts
are shown in Example 1-13.

When you enter a directory name at the top of the browser, we call the
load_dir procedure to build a new file tree. If there is an existing tree, we
destroy it by destroying its root node. Then, we create a new root object to
represent the tree. At some point, we use another procedure called show_dir
(not shown here) to display the contents of this node in a listbox. When you
double-click on a directory, we call show_dir for that node. When you double-
click on BACK UP, we call show_dir for the parent node. Whenever we call
show_dir, it asks for the contents of a node, and the node populates itself as
needed.

The root object uses the create_node procedure to procreate. When its child
nodes are created, directory names are given a trailing “/”, and regular files are
given a value that represents their size. All child nodes are configured to

Chapter 1: Object-Oriented Programming with [incr Tcl]

37

procreate using the same create_node procedure, so each node expands the
same way.

Multiple Inheritance

Suppose we want to create a file browser with a graphical display like the one
shown in Figure 1-11.

We have all of the pieces that we need. We can use the FileTree class to store
the file hierarchy, and the VisualRep class to draw file elements on a canvas.

Example 1-13 A simple file browser built with the FileTree class.

set root ""
proc load_dir {dir} {
 global root

 if {$root != ""} {
 delete object $root
 }
 set root [FileTree #auto $dir -procreate create_node]
 return $root
}

proc create_node {fname} {
 if {[file isdirectory $fname]} {
 set obj [FileTree #auto $fname -name "$fname/"]
 } else {
 set obj [FileTree #auto $fname -name $fname]
 $obj configure -value [file size $fname]
 }
 $obj configure -procreate create_node

 return $obj
}

Figure 1-11 A file browser with a graphical display.

Tcl/Tk Tools

38

But how do we combine these elements together? One solution is to use inherit-
ance. We might create a class VisualFileTree to represent each file on the
display. We could say that VisualFileTree is-a FileTree, since it represents
a node in the file hierarchy, and VisualFileTree is-a VisualRep, since it will
be drawn on a canvas. In this case, VisualFileTree needs to inherit from two
different base classes. This is called multiple inheritance. A diagram of these
relationships is shown in Figure 1-12.

The file itcl/tree/tree8.itcl contains a complete code example for the file
browser, but the VisualFileTree class itself is shown in Example 1-14.

Figure 1-12 Diagram of class relationships with multiple inheritance.

Example 1-14 VisualFileTree class used for the file browser shown in Figure 1-11.

class VisualFileTree {
 inherit FileTree VisualRep

 public variable state "closed"
 public variable selectcommand ""

 constructor {file cwin args} {
 FileTree::constructor $file
 VisualRep::constructor $cwin
 } {
 eval configure $args
 }

 public method select {}
 public method toggle {}

 public method draw {ulVar midVar}
 public method refresh {}
}

body VisualFileTree::select {} {
 VisualRep::clear $canvas
 VisualRep::select
 regsub -all {%o} $selectcommand $this cmd
 uplevel #0 $cmd
}

body VisualFileTree::toggle {} {
 if {$state == "open"} {
 set state "closed"
 } else {

VisualFileTree

Tree

FileTree VisualRep

Chapter 1: Object-Oriented Programming with [incr Tcl]

39

Each class can have only one inherit statement, but it can declare several base
classes, which should be listed in their order of importance. First and foremost,
VisualFileTree is a FileTree, but it is also a VisualRep. This means that
any methods or variables that are not defined in VisualFileTree are found
first in FileTree, and then in VisualRep. When base classes have members
with the same name, their order in the inherit statement can affect the
behavior of the derived class.

 set state "open"
 }
 refresh
}

configbody VisualFileTree::state {
 if {$state != "open" && $state != "closed"} {
 error "bad value \"$state\": should be open or closed"
 }
 refresh
}

body VisualFileTree::draw {ulVar midVar} {
 upvar $ulVar ul
 upvar $midVar mid

 VisualRep::draw ul mid
 $canvas bind $this <ButtonPress-1> "$this select"
 $canvas bind $this <Double-ButtonPress-1> "$this toggle"

 set lr(x) [expr $ul(x) + 2*($mid(x)-$ul(x))]
 set lr(y) $ul(y)

 if {$state == "open"} {
 foreach obj [contents] {
 $obj draw lr mid2
 set id [$canvas create line \
 $mid(x) $mid(y) $mid(x) $mid2(y) $mid2(x) $mid2(y) \
 -fill black]
 $canvas lower $id
 }
 }
 set ul(y) $lr(y)
}

body VisualFileTree::refresh {} {
 set root $this
 while {[$root back] != ""} {
 set root [$root back]
 }

 set oldcursor [$canvas cget -cursor]
 $canvas configure -cursor watch
 update
 $canvas delete all

 set ul(x) 5
 set ul(y) 5
 $root draw ul mid
 set bbox [$canvas bbox all]
 $canvas configure -cursor $oldcursor -scrollregion $bbox
}

Example 1-14 VisualFileTree class used for the file browser shown in Figure 1-11.

Tcl/Tk Tools

40

Notice that we added a -state option to VisualFileTree, and we redefined
the draw method to handle it. When we draw a node that has -state set to
“open”, we also draw the file hierarchy underneath it. First, we call
VisualRep::draw to draw the file name and its icon on the canvas. Then, if
this object is in the “open” state, we scan through the list of child nodes and tell
each one to draw itself in the space below. If a child is also in the “open” state,
it will tell its children to draw themselves, and so on.

It is easy to arrange things on the canvas. The draw method does all of the hard
work. As you will recall from Example 1-11, we use the ul array to pass in the
(x,y) coordinate for the upper-left corner of the icon. When we call
VisualRep::draw, it draws only a file name and an icon, and it shifts ul(y)
down below them. When we call VisualFileTree::draw, it draws a file name
and an icon, and perhaps an entire file tree below it. But again, it shifts ul(y)
down so we are ready to draw the next element.

The draw method also returns the midpoint of the icon via the midVar argu-
ment. This makes it easy to draw the connecting lines between a parent icon
and each of the child icons. In the VisualFileTree::draw method, for
example, we capture the parent coordinate in the mid array. When we call the
draw method for the child, it returns the child coordinate in the mid2 array. We
then draw the lines connecting these two points.

As we draw each file entry, we add some bindings to it. If you click on a file,
we call the select method to select it. If you double-click on a file, we call the
toggle method to toggle it between the “open” and “closed” states.

We redefined the select method for a VisualFileTree object to support a
-selectcommand option. This is a lot like the -command option for a button
widget. It lets you do something special each time a VisualFileTree object is
selected. When we call the select method, it first calls VisualRep::clear to
deselect any other files, and then calls the base class method
VisualRep::select to highlight the file. Finally, it executes the code stored in
the -selectcommand option. We use “uplevel #0” to execute this code at the
global scope, so it doesn’t change any variables within the select method by
accident.

If the -selectcommand code contains the string “%o”, we use regsub to replace
it with the name of the VisualFileTree object before the code is executed.
This is similar to the way the Tk bind command handles fields like “%x” and
“%y”. This feature lets us use the same -selectcommand for all of our
VisualFileTree objects, but each time it is executed, we know which object
was selected.

Chapter1: Object-Oriented Programming with [incr Tcl]

41

The toggle method toggles the -state option between open and closed, and
refreshes the drawing on the canvas. In effect, this opens or closes a folder in
the file hierarchy.

The refresh method should be called whenever anything changes that would
affect the drawing on the canvas. Whenever the -state option changes, for
instance, we need to refresh the drawing to expand or collapse the file tree at
that point. The configbody for the state variable first checks to see if the new
state is valid, and then calls refresh to update the drawing. The refresh
method searches up through the hierarchy to find the root of the tree. It clears
the canvas and then tells the root object to draw itself at the coordinate (5,5). If
the root is “open,” then its children will be drawn, and if they are “open,” their
children will be drawn, and so forth. The entire drawing is regenerated with
just one call to refresh.

Protection Levels: Protected

So far, we have discussed two protection levels. Private class members can be
accessed only in the class where they are defined. Public members can be
accessed from any context. When one class inherits another, therefore, the
inherited members that are public can be accessed from the derived class
context. The private members are completely private to the base class.

Some members sit in the gray area between public and private. They need to be
accessed in derived classes, but they should not be exposed to anyone using the
class. For example, in the VisualRep base class shown in Example 1-11, we
defined a canvas variable to store the name of the canvas used for drawing.
Since this is a private variable, a derived class like VisualFileTree does not
have access to it. The methods shown in Example 1-14 like
VisualFileTree::draw and VisualFileTree::select will fail, claiming that
canvas is an undefined variable.

Like C++, [INCR TCL] provides a third level of protection that falls between
public and private. When members need to be shared with derived classes but
shielded from anyone using the class, they should be declared protected. We
can fix the VisualRep class to use a protected variable as shown in Example 1-
15.

Example1-15 “Protected” members can be accessed in derived classes.

class VisualRep {
 public variable icon "default"
 public variable title ""

 protected variable canvas ""

 ...

Tcl/Tk Tools

42

As a rule, it is better to use public and private declarations for most of your
class members. Public members define the class interface, and private members
keep the implementation details well hidden. Protected members are useful
when you are creating a base class that is meant to be extended by derived
classes. A few methods and variables may need to be shared with derived
classes, but this should be kept to a minimum. Protected members expose
implementation details in the base class. If derived classes rely on these details,
they will need to be modified if the base class ever changes.

Constructors and Destructors

Each class can define one constructor and one destructor. However, a class can
inherit many other constructors and destructors from base classes.

When an object is created, all of its constructors are invoked in the following
manner. First, the arguments from the object creation command are passed to
the most-specific constructor. For example, in the command:

VisualFileTree #auto /usr/local/lib .canv -icon dirIcon

the arguments “/usr/local/lib .canv -icon dirIcon” are passed to
VisualFileTree::constructor. If any arguments need to be passed to a base
class constructor, the derived constructor should invoke it using a special piece
of code called an initialization statement. This statement is sandwiched
between the constructor’s argument list and its body. For example, the
VisualFileTree class shown in Example 1-14 has an initialization statement
that looks like this:

FileTree::constructor $file
VisualRep::constructor $cwin

The file argument is passed to the FileTree::constructor, and the cwin
argument is passed to the VisualRep::constructor. The remaining arguments
are kept in the args variable, and are dealt with later.

}

class VisualFileTree {
 inherit FileTree VisualRep
 ...
 public method select {}
 ...
}

body VisualFileTree::select {} {
 VisualRep::clear $canvas
 VisualRep::select
 regsub -all {%o} $selectcommand $this cmd
 uplevel #0 $cmd
}

Example1-15 “Protected” members can be accessed in derived classes.

Chapter 1: Object-Oriented Programming with [incr Tcl]

43

After the initialization statement is executed, any base class constructors that
were not explicitly called are invoked without arguments. If there is no initial-
ization statement, all base class constructors are invoked without arguments.
This guarantees that all base classes are fully constructed before we enter the
body of the derived class constructor.

Each of the base class constructors invoke the constructors for their base classes
in a similar manner, so the entire construction process is recursive. By default,
an object is constructed from its least-specific to its most-specific class. If
you’re not sure which is the least-specific and which is the most-specific class,
ask an object to report its heritage. If we had a VisualFileTree object named
fred, we could query its heritage like this:

% fred info heritage
VisualFileTree FileTree Tree VisualRep

This says that VisualFileTree is the most-specific class and VisualRep is the
least-specific. By default, the constructors will be called in the order that you
get by working backward through this list. Class VisualRep would be
constructed first, followed by Tree, FileTree, and VisualFileTree. Our
initialization statement changes the default order by calling out
FileTree::constructor before VisualRep::constructor.

Objects are destroyed in the opposite manner. Since there are no arguments for
the destructor, the scheme is a little simpler. The most-specific destructor is
called first, followed by the next most-specific, and so on. This is the order that
you get by working forward through the heritage list. VisualFileTree would
be destructed first, followed by FileTree, Tree and VisualRep.

Inheritance versus Composition

Inheritance is a way of sharing functionality. It merges one class into another,
so that when an object is created, it has characteristics from both classes. But in
addition to combining classes, we can also combine objects. One object can
contain another as a component part. This is referred to as a compositional or
has-a relationship.

For example, suppose we rewrite our VisualFileTree class so that a
VisualFileTree is-a FileTree, but has-a VisualRep as a component part.
Figure 1-13 shows a diagram of this design.

The code for this VisualFileTree class is quite similar to Example 1-14, but
we have highlighted several important differences in bold type. Whenever we
create a VisualFileTree object, we create a separate VisualRep object to
handle interactions with the canvas. We create this component in the

Tcl/Tk Tools

44

constructor, and save its name in the variable vis. We delete this component in
the destructor, so that when a VisualFileTree object is deleted, its VisualRep

Figure 1-13 VisualFileTree class has-a VisualRep component.

Example 1-16 VisualFileTree class which brings in VisualRep using composition instead
of inheritance.

class VisualFileTree {
 inherit FileTree

 public variable state "closed"
 public variable selectcommand ""

 public variable icon "" {
 $vis configure -icon $icon
 }
 public variable title "" {
 $vis configure -title $title
 }

 private variable vis ""

 constructor {file cwin args} {
 FileTree::constructor $file
 } {
 set vis [VisualRep #auto $cwin -icon $icon -title $title]
 eval configure $args
 }
 destructor {
 delete object $vis
 }

 public method select {}
 public method toggle {}

 public method draw {ulVar midVar}
 public method refresh {}
}

body VisualFileTree::select {} {
 VisualRep::clear [$vis canvas]
 $vis select
 regsub -all {%o} $selectcommand $this cmd
 uplevel #0 $cmd
}

...

VisualFileTree

Tree

FileTree

VisualRep

is-a
has-a

is-a

Chapter 1: Object-Oriented Programming with [incr Tcl]

45

component is deleted as well. If we didn’t do this, theVisualRep components
would hang around indefinitely, and we would have a memory leak.

With inheritance, all of the public members from the base class are automati-
cally integrated into the derived class, becoming part of its interface. With
composition, nothing is automatic. If you need to access a method or a configu-
ration option on the component, you must write a “wrapper” in the containing
class. For example, theVisualRep component has-icon and-title options
that control its appearance. If we want to be able to set-icon and-title for
theVisualFileTree object, we must explicitly add these variables, and include
configbody code to propagate any changes down to theVisualRep component.

With inheritance, we have access to protected data members defined in the base
class. With composition, we have access only to the public interface for the
component part. Since theVisualRep is now a separate object, we cannot
access itscanvas variable fromVisualFileTree. But we can call itscanvas
method to query the name of its canvas. (We were smart enough to add this
back in Example1-11, although we hardly mentioned it at the time.) We use
this in theselect method to clear otherVisualRep objects on the same canvas
before selecting a new one.

Inheritance and composition are like two sides of the same coin. Sometimes
inheritance leads to a better solution, sometimes composition. Many problems
are solved equally well using either approach. Knowing whether to use inherit-
ance or composition is a matter of experience and judgement, but I can give you
a few simple guidelines here.

• Use inheritance to create layers of abstraction.

For example, the code for aVisualFileTree is neatly abstracted into three
classes:VisualFileTree is-a FileTree, which is-a Tree. Now suppose
that we have a problem with theVisualFileTree. We won’t have to
search through all of the code to find the bug. If the problem has to do with
the tree, we look in theTree class. If it has to do with the file system, we
look in theFileTree class. And so on.

• Use inheritance to build a framework for future enhancements.

We can extend our tree library at any point by adding new classes into the
hierarchy. For example, we might create a classWidgetTree that is-a
Tree, but adds code to query the Tk widget hierarchy. We might create a
classSourceFileTree that is-a FileTree, but adds methods to support
source code control.

Tcl/Tk Tools

46

• Use composition when you catch yourself making exceptions to the is-a
rule.

With inheritance, all of the public variables and all of the methods in the
base class apply to the derived class. For example, FileTree is-a Tree, so
we can treat it exactly like any other Tree object. We can add nodes to it,
reorder the nodes, clear the nodes, and set the -name, -value and -sort
options. If you catch yourself making exceptions to this, then you are no
longer talking about inheritance.†

Suppose you’re thinking that FileTree is like a Tree, except that you can’t
clear it, and it doesn’t have the -value option. In that case, you should add
the tree behavior using composition instead of inheritance. You could say
that FileTree has-a Tree within it to maintain the actual data. The Tree
would be completely hidden, but you could wrap the methods and the
options that you want to expose.

• Use composition when the relationships between classes are dynamic.

Again, with inheritance FileTree is-a Tree, once and for all time. Sup-
pose you wanted to have FileTree switch dynamically between a tree rep-
resentation and a flat list of files. In that case, you would be better off
using composition to support interchangeable parts. You could say that
FileTree has-a Tree, or that FileTree has-a List, depending on its mode
of operation.

• Use composition when a single object must have more than one part of the
same type.

When we first presented class VisualFileTree, for example, we said that
VisualFileTree is-a VisualRep, which appears on a canvas. But suppose
that you wanted a single VisualFileTree object to appear on many differ-
ent canvases. You could support this using composition. You could say
that VisualFileTree has-a VisualRep component for each canvas that it
appears on.

• Use composition to avoid deep inheritance hierarchies.

With inheritance, each class builds on the one before it. At first, this seems
like an exciting way to reuse code. But it can easily get out of hand. At
some point, it becomes impossible to remember all the details that build up
in a series of base classes. Most programmers reach their limit after some-

† C++ lets you suppress certain things coming from a base class through private inheritance. This evil
feature is not supported by [INCR TCL].

Chapter 1: Object-Oriented Programming with [incr Tcl]

47

thing like 5 levels of inheritance. If you trade off some of your inheritance
relationships for composition, you can keep your hierarchies smaller and
more manageable.

• If you can’t decide between inheritance and composition, favor
composition.

Inheritance lets you reuse code, but it is white-box reuse. Each base class
is exposed—at least in part—to all of its derived classes. You can see this
in Example 1-15. The VisualFileTree class relies on the canvas variable
coming from the VisualRep base class. This introduces coupling between
the two classes and breaks encapsulation. If we ever change the implemen-
tation of VisualRep, we may have to revisit VisualFileTree.

On the other hand, composition supports black-box reuse. The internal
workings of each object are completely hidden behind a well-defined inter-
face. In Example 1-16, we modified the VisualFileTree class to use a
VisualRep component. Instead of relying on its internal canvas variable,
we used a well-defined method to interact with its canvas. Therefore,
VisualFileTree is completely shielded from any changes we might make
inside VisualRep.

Neither inheritance nor composition should be used exclusively. Using only
one or the other is like using only half of the tools in a tool box. The choice of
tool should be based on the problem at hand. Realistic designs have many
different classes with a mixture of both relationships.

Namespaces
A namespace is a collection of commands, variables and classes that is kept
apart from the usual global scope. It provides the extra packaging needed to
create reusable libraries that plug-and-play with one another.

For example, suppose we want to reuse our file browser code in other applica-
tions. We need to include our classes, along with procedures like load_dir and
create_node shown in Example 1-13. But if an application happens to have
procedures named load_dir or create_node, adding the file browser code will
break it. If an application already uses a global variable named root, calling
the load_dir procedure will corrupt its value.

Name collisions like this make it difficult to construct large Tcl/Tk applica-
tions. They cause strange errors that are difficult to debug, and they are a
barrier to code reuse. But when commands, variables and classes are packaged
in their own namespace, they are shielded from the rest of an application.
Libraries can be used freely, without fear of unwanted interactions.

Tcl/Tk Tools

48

Creating Namespaces

We can turn our file browser code into a file browser library by packaging it in
a namespace. A complete code example appears in the file itcl/tree/tree10.itcl,
but the important parts are shown in Example 1-17. Variables and procedures
are added to a namespace in much the same way that they are added to a class.
Procedures are defined using the usual proc command. Variables are defined
using the variable command, which may include an initialization value. These
are not instance variables like you would have in a class. These variables act
like ordinary “global” variables, but they reside within the namespace, and not
at the usual global scope. Defining a variable causes it to be created, but unlike
a class, the variable is not automatically available in the procedures in the
namespace. You must declare each variable with the Tcl global command to
gain access to it.

Within the context of the namespace, commands and variables can be accessed
using simple names like load_dir and roots. All of the procedures defined in
a namespace execute in that context, so within the body of load_dir, we can
access things like create_node and roots without any extra syntax. In another
context, names must have an explicit namespace qualifier. For example, an
application could use the load_dir procedure like this:

filebrowser::load_dir .display.canv /usr/local/lib

This is just how we would call a class procedure, and the similarity is no acci-
dent. A class is a namespace, but with a little extra functionality to create and
manage objects. Classes are also more rigid. Once the class interface is

Example 1-17 Namespace for the file browser library.

namespace filebrowser {
 variable roots

 proc load_dir {cwin dir {selcmd ""}} {
 global roots

 if {[info exists roots($cwin)]} {
 delete object $roots($cwin)
 }
 set roots($cwin) [create_node $cwin $selcmd $dir]
 $roots($cwin) configure -state open
 $roots($cwin) refresh

 return $roots($cwin)
 }

 proc create_node {cwin selcmd fname} {
 ...
 }

 proc cmp_tree {option obj1 obj2} {
 ...
 }
}

Chapter1: Object-Oriented Programming with [incr Tcl]

49

defined, it cannot be modified unless the class is deleted. But a namespace can
be updated on-the-fly to create, redefine or delete commands and variables.

We can add another procedure to the filebrowser namespace with another
namespace command, like this:

namespace filebrowser {
 proc all {} {
 global roots
 return [array names roots]
 }
}

This activates the filebrowser context, and then executes the proc command
within it, defining the new procedure. Another way of creating the procedure is
to define it with an ordinary proc command, but include the namespace context
in its name:

proc filebrowser::all {} {
 global roots
 return [array names roots]
}

The procedure can be deleted like this:

namespace filebrowser {
 rename all ""
}

or like this:

rename filebrowser::all ""

An entire namespace can be deleted using the delete command, like this:

delete namespace filebrowser

This deletes all commands and variables in the namespace, and removes all
trace of the namespace itself.

The namespace containing a command or variable is part of the identity for that
command or variable. Elements with the same name in another namespace are
totally separate. Suppose we wrap our du browser in a namespace, as shown in
Example 1-18.

Example1-18 Namespace for the “du” browser library.

namespace diskusage {
 variable roots

 proc load_dir {twin dir} {
 global roots

 set parentDir [file dirname $dir]
 set roots($twin) [Tree ::#auto -name $parentDir]
 set hiers($parentDir) $roots($twin)

Tcl/Tk Tools

50

The diskusage namespace also contains a load_dir command and a roots
variable, but they are completely separate from those in the filebrowser
namespace. This is obvious when we try to use them. An application could
load a directory into the file browser like this:

filebrowser::load_dir .display.canv /usr/local/lib

and display the usage information for a directory like this:

diskusage::load_dir .textwin /usr/local/lib

The explicit namespace qualifiers remove the ambiguity between these two
commands.

One namespace can contain another namespace inside it, so one library can
have its own private copy of another library. For example, we could include the
diskusage library within the filebrowser library like this:

namespace filebrowser {
 namespace diskusage {
 variable roots
 proc load_dir {twin dir} {
 ...
 }
 ...
 }
}

Within the filebrowser namespace, the usage information for a directory
could be displayed as shown earlier:

 set info [split [exec du -b $dir] \n]
 set last [expr [llength $info]-1]

 for {set i $last} {$i >= 0} {incr i -1} {
 ...
 }
 show_dir $twin $roots($twin)
 ...
 }

 proc show_dir {twin obj} {
 ...
 }

 proc add_entry {twin line obj} {
 ...
 }

 proc cmp_tree {obj1 obj2} {
 ...
 }
}

Example1-18 Namespace for the “du” browser library.

Chapter 1: Object-Oriented Programming with [incr Tcl]

51

namespace filebrowser {
 diskusage::load_dir .textwin /usr/local/lib
}

Outside of filebrower, the complete namespace path must be specified:

filebrowser::diskusage::load_dir .textwin /usr/local/lib

Every interpreter has a global namespace called “::” which contains all of the
other namespaces. It also contains the usual Tcl/Tk commands and global vari-
ables. Each Tcl/Tk application starts off in this namespace, which I call the
global context. When you define other namespaces and call their procedures,
the context changes.

Name Resolution

Qualified names are like file names in the Unix file system, except that a “::”
separator is used instead of “/”. Any name that starts with “::” is treated as an
absolute reference from the global namespace. For example, the command

::filebrowser::diskusage::load_dir .textwin /usr/local/lib

refers to the load_dir command in the diskusage namespace, in the
filebrowser namespace, in the global namespace.

If a name does not have a leading “::”, it is treated relative to the current
namespace context. Lookup starts in the current namespace, then continues
along a search path. Each namespace has an import list that defines its search
path. When a namespace is added to the import list, all of the commands and
variables in that namespace can be accessed with simple names.

For example, we could import the filebrowser namespace into the global
namespace like this:

import add filebrowser

We could then use the load_dir command in the global namespace without an
explicit qualifier, like this:

load_dir .display.canv /usr/local/lib

The load_dir command is not found directly in the global namespace, but reso-
lution continues along the import path to the filebrowser namespace, where
the filebrowser::load_dir command is found.

It is okay to import other namespaces that have the same command or variable
names. We could import the diskusage namespace, even though it also has a
load_dir procedure. The first command or variable found along the import
path is the one that gets used.

Tcl/Tk Tools

52

If you have any questions regarding name resolution, they can be answered by
using the “info which” command. This command returns the fully qualified
name for any command, variable or namespace in the current context. In this
example, the command:

info which -command load_dir

would return the fully qualified name ::filebrowser::load_dir.

By default, each namespace imports its parent, so commands and variables in
the global namespace are automatically accessible. Other import relationships
should be used sparingly. After all, if the global namespace imported all of the
others, we would be back to one big pot of commands and variables, and there
wouldn’t be much point to having namespaces.

Using Objects Outside of Their Namespace

If you create an object within a namespace, you’ll have trouble referring to it
outside of the namespace. Suppose you create a VisualFileTree object within
the filebrowser namespace like this:

namespace filebrowser {
 VisualFileTree fred /usr/local/lib .display.canv
}

and then you try to add a node to it in another namespace like this:

namespace diskusage {
 VisualFileTree wilma /usr/local/bin .display.canv
 fred add wilma
}

This will fail. Since the fred object was created in the filebrowser
namespace, the fred command is local to that namespace. We will not be able
to find a fred command in diskusage unless the filebrowser namespace is
somewhere on its import path.

Usually, this is a good thing. Namespaces are doing their job of keeping the
two packages separate, and protecting the elements inside them. But from time
to time, you will want to share objects between packages. This problem all has
to do with naming, and it can be solved through proper naming too.

One solution is to use the full name of an object when you are referring to it in
another namespace. For example, we could say:

namespace diskusage {
 VisualFileTree wilma /usr/local/bin .display.canv

::filebrowser::fred add wilma
}

Chapter 1: Object-Oriented Programming with [incr Tcl]

53

You may have noticed that an object’s this variable reports the full name of
the object, including its namespace path. This is the reason. If you use $this
is a command, you will be able to find the object from any context. When you
use the full name, you leave nothing to chance in command resolution.

Another solution is to create the object in some namespace that all of your pack-
ages naturally import. For example, all namespaces import the global “::”
namespace. You can create an object in the global namespace like this:

namespace filebrowser {
uplevel #0 VisualFileTree fred /usr/local/lib .display.canv

}

or like this:

namespace filebrowser {
namespace :: { VisualFileTree fred /usr/local/lib .display.canv }

}

or like this:

namespace filebrowser {
 VisualFileTree ::fred /usr/local/lib .display.canv
}

In the first case, we use the “uplevel #0” command to transition to the 0th call
frame, which is the global context, and we create the object there. In the second
case, we use the namespace command to get the same effect. In the third case,
we execute the VisualFileTree command in the filebrowser namespace, but
we give the object a name that belongs to the global namespace. The effect is
the same. We create an object named fred that we can access from the global
namespace, and therefore, we can access it from any namespace in the
application.

Instead of putting an object all the way out in the global namespace, you may
want to put it in a more restricted namespace that only certain packages have
access to. Remember, namespaces can be nested, and each namespace automati-
cally imports things from its parent. We could wrap the filebrowser and the
diskusage namespace in another namespace called filestuff, for example,
and put all of the shared objects in filestuff:

namespace filestuff {
 namespace filebrowser {
 ...
 VisualFileTree ::filestuff::fred /usr/local/lib .display.canv
 }

Tcl/Tk Tools

54

 namespace diskusage {
 ...
 VisualFileTree ::filestuff::wilma /usr/local/bin .display.canv
 fred add wilma
 }
}

That way, these objects can still be shared across filebrowser and diskusage,
but they won’t interfere with any other packages.

Sometimes it is easy to forget that other classes need access to an object. When
the Tree class adds an object to a tree, for example, it needs to talk to that
object to set its parent. If all of our Tree objects are sitting in the filestuff
namespace, but the Tree class itself is sitting one level up in the global
namespace, we will again have problems. As much as possible, keep all of the
code related to a package together in the same namespace. If the Tree class is
needed only for the filebrowser package, put it in the filebrowser
namespace. If it needs to be shared across both the filebrowser and the
diskusage packages, put it above them in the filestuff namespace.

Classes can be defined within a namespace like this:

namespace filestuff {
 class Tree {
 ...
 }
 class FileTree {
 ...
 }
 ...
}

or like this:

class filestuff::Tree {
 ...
}
class filestuff::FileTree {
 ...
}
...

In either case, the classes are completely contained within the filestuff
namespace, so if an application has another Tree class, it will not interfere with
the one in the filestuff namespace. More importantly, since the Tree class
now resides within filestuff, it automatically has access to the objects in
filestuff.

Chapter 1: Object-Oriented Programming with [incr Tcl]

55

Protection Levels

Just as you can have public, private and protected elements in a class, you can
have public, private and protected elements in a namespace. This helps to docu-
ment your interface, so that someone using your library knows which variables
and procedures they can access, and which ones they should leave alone. For
example, look at the filebrowser library shown in Example 1-19. It is obvious
that load_dir procedure is the only thing that you need to use to access a file
browser. Everything else is private to the filebrowser namespace.

If you don’t specify a protection level, everything is public by default, including
your variables. This makes namespaces backward-compatible with the rest of
Tcl/Tk, but it also makes them different from classes. In classes, methods are
public by default, but variables are protected.

Namespaces are also a little different when it comes to protected elements. In a
class, protected elements can be accessed in any derived class. But there is no
“derived” namespace. The closest equivalent is a nested namespace. If you
create a protected element in one namespace, you can access the element in any
of the other namespaces nested within it. You might create a protected variable
in a namespace like filestuff and share it among the namespaces like
filebrowser and diskusage nested within it.

On the other hand, a private element is completely private to the namespace that
contains it. If you create a private variable in filestuff, it will not show up in
any other context, including nested namespaces like filebrowser and
diskusage.

Example 1-19 File browser library with public/private declarations.

namespace filebrowser {
private variable roots

public proc load_dir {cwin dir {selcmd ""}} {
 global roots

 if {[info exists roots($cwin)]} {
 delete object $roots($cwin)
 }
 set roots($cwin) [create_node $cwin $selcmd $dir]
 $roots($cwin) configure -state open
 $roots($cwin) refresh

 return $roots($cwin)
 }

private proc create_node {cwin selcmd fname} {
 ...
 }

private proc cmp_tree {option obj1 obj2} {
 ...
 }
}

Tcl/Tk Tools

56

Using Classes and Namespaces

There are some strong similarities between classes and namespaces, but they
play different roles in your application. Classes are data structures. They let
you create objects to represent the data in your application. For example, we
used VisualFileTree objects to represent each of the files in our file browser.
On the other hand, namespaces are a way of organizing things. We used the
filebrowser namespace to wrap up the variables and procedures for our file
browser library. There is one variable roots and one procedure load_dir for
the file browser, but instead of floating around at the global scope, they are
grouped together in the filebrowser namespace.

You can use namespaces to organize classes. For example, we grouped Tree,
FileTree and VisualFileTree into the filestuff namespace. Again, instead
of floating around at the global scope, these classes reside with the rest of the
file browser library, where they are needed.

You can also use namespaces to organize other namespaces. For example, we
grouped the filebrowser namespace and the diskusage namespace into the
same filestuff namespace. We can add the filestuff library to any of our
applications, and access the separate filebrowser and diskusage utilities
within it.

Scoped Commands and Variables

Classes and namespaces are really good at protecting the elements within them.
But suppose you want something to be private or protected, but there is one
other class—or perhaps one other object—that needs to have access to it. This
may be a completely separate class with no inheritance relationship, so we can’t
rely on “protected” access to solve the problem. And we don’t want to open
things up for “public” access. In C++, you can declare certain classes and func-
tions as friends, thereby granting them special access privileges. In [INCR TCL],
we handle this in a different manner, but the effect is the same.

You can see the problem more clearly in the following example. Suppose we
have a folder::create procedure that creates a checkbutton with an associ-
ated file folder icon. We might use this procedure like this:

set counter 0
foreach dir {/usr/man /usr/local/man /usr/X11/man} {
 set name ".dir[incr counter]"
 folder::create $name $dir
 pack $name -fill x
}

Chapter 1: Object-Oriented Programming with [incr Tcl]

57

to create the checkbuttons shown in Figure 1-14. When you toggle one of these
checkbuttons, it changes the indicator box, and it also opens or closes the folder
icon.

The folder::create procedure is shown in Example 1-20. Each time we call
it, we create a frame with a label and a checkbutton. Each checkbutton needs a
variable to keep track of its state. If we use an ordinary global variable, it might
conflict with other variables in the application. Instead, we create a modes vari-
able inside the folder namespace, and we make it private so that no one else
can tamper with it. We treat this variable as an array, and we give each folder
assembly a different slot within it. Whenever the checkbutton is invoked, it
toggles this variable and calls the redisplay procedure to update the icon.

Figure 1-14 Some checkbuttons created by folder::create.

Example 1-20 Using the code and scope commands to share command and variable
references.

namespace folder {
 private variable images
 set images(open) [image create photo -file dir1.gif]
 set images(closed) [image create photo -file dir2.gif]

 private variable modes

 public proc create {win name} {
 frame $win
 label $win.icon
 pack $win.icon -side left

 checkbutton $win.toggle -text $name \
 -onvalue "open" -offvalue "closed" \
 -variable [scope modes($win)] \
 -command [code redisplay $win]

 pack $win.toggle -side left -fill x
 $win.toggle invoke
 }

 public proc get {win} {
 global modes
 return $modes($win)
 }

 private proc redisplay {win} {
 global modes images
 set state $modes($win)
 $win.icon configure -image $images($state)
 }
}

Tcl/Tk Tools

58

The checkbutton is clearly a key player in the folder library. We want it to
have access to the modes variable and to the redisplay procedure, but we also
want to keep these things private. No one else should really be using them.
Unless we do something special, the checkbutton will be treated as an outsider
and it will be denied access to these elements.

The problem is that options like -command and -variable are being set inside
the folder namespace, but they are not evaluated until much later in the
program. It is not until you click on a checkbutton that it toggles the variable
and invokes the command. This happens in another context, long after we have
left the folder::create procedure.

There are two commands that let you export part of a namespace to a friend.
The scope command lets you export a variable reference, and the code
command lets you export a code fragment. Both of these commands are used
on a case-by-case basis. When we create the checkbutton and set the -vari-
able option, for example, we enclosed the modes variable in the scope
command. This gives the checkbutton access to just this variable.† If we set
the -variable option to a different variable name, it will lose access to the
modes variable. Similarly, when we set the -command option, we enclosed the
code fragment in the code command. This lets the checkbutton execute the
redisplay command. But if we set the -command option to something else,
again, it will lose access to redisplay.

The code and scope commands work by capturing the namespace context.
They preserve it in such a way that it can be revived again later. So when the
checkbutton needs to access its variable, it actually jumps back into the folder
namespace and looks for the modes variable. When the checkbutton needs to
invoke its command, again, it jumps back into the folder namespace and looks
for the redisplay command. Since it accesses things from within the folder
namespace, it by-passes the usual protection levels. In effect, we have given the
checkbutton a “back door” into the namespace.

You can see how this works if you query back the actual -command or -vari-
able string that the checkbutton is using. For example, we created the
checkbutton with a command like this:

checkbutton $win.toggle ... -command [code redisplay $win]

But if we query back the -command string, it will look like this:

@scope ::folder {redisplay .dir1}

† Actually, to just one slot in the array.

Chapter 1: Object-Oriented Programming with [incr Tcl]

59

This string is the result of the code command, and is called a scoped value. It is
really just a list with three elements: the @scope keyword, a namespace
context, and a value string. If this string is executed as a command, it automati-
cally revives the ::folder namespace, and then executes the code fragment
“redisplay .dir1” in that context.

Note that the code command does not execute the code itself. It merely formats
the command so that it can be executed later. We can think of [code ...] as a
new way of quoting Tcl command strings.

When the code command has multiple arguments, they are formatted as a Tcl
list and the resulting string becomes the “value” part of the scoped value. For
example, if you execute the following command in the folder namespace:

set cmd [code $win.toggle configure -text "empty folder"]

it produces a scoped value like this:

@scope ::folder {.dir1.toggle configure -text {empty folder}}

Notice how the string “empty folder” is preserved as a single list element. If it
were not, the command would fail when it is later executed.

The code command can also be used to wrap up an entire command script like
this:

bind $win.icon <ButtonPress-1> [code "
 $win.toggle flash
 $win.toggle invoke
"]

In this case, we combined two commands into one argument. There are no
extra arguments, so the code paragraph simply becomes the “value” part of the
scoped value that is produced.

The scope command works the same way as the code command, except that it
takes only one argument, the variable name. For example, we created the check-
button like this:

checkbutton $win.toggle ... -variable [scope modes($win)]

But if we query back the -value string, it will look like this:

@scope ::folder modes(.dir1)

This entire string represents a single variable name. If we try to get or set this
variable, the @scope directive shifts us into the folder namespace, and looks
for a variable named modes in that context.

Tcl/Tk Tools

60

If you forget to use the code and scope commands, you’ll get the normal Tk
behavior—your commands and variables will be handled in the global context.
For example, if we created the checkbutton like this:

checkbutton $win.toggle -text $name \
 -onvalue "open" -offvalue "closed" \
 -variable modes($win) \
 -command "redisplay $win"

then it would look for a variable named modes in the global namespace, and it
would try to execute a command called redisplay in the global context. In
some cases this is okay, but more often than not you will need to use the code
and scope commands to get things working properly.

You should use the code and scope commands whenever you are handing off a
reference to something inside of a namespace. Use the code command with
configuration options like -command, -xscrollcommand, -yscrollcommand,
etc., and with Tk commands like bind, after and fileevent. Use the scope
command with options like -variable and -textvariable, and with Tk
commands like “tkwait variable”.

But although you should use these commands, you should not abuse them.
They undermine a key feature of object-oriented programming: encapsulation.
If you use these commands to break into a class or a namespace where you
don’t belong, you will pay for it later. At some point, details inside the class or
the namespace may change, and your code will break miserably.

Interactive Development
[INCR TCL] has many features that support debugging and interactive develop-
ment. Each class has a built-in info method that returns information about an
object. So you can query things like an object’s class or its list of methods on
the fly. This is not possible in C++, but it is quite natural in a dynamic
language like Tcl.

Suppose we have defined classes like Tree and FileTree, and we create a
FileTree object by typing the following command at the “%” prompt:

% FileTree henry /usr/local -procreate "FileTree #auto"
henry

We get the result henry which tells us that an object was created successfully.

If someone hands us this object and we want to determine its class, we can use
the “info class” query:

% henry info class
FileTree

Chapter 1: Object-Oriented Programming with [incr Tcl]

61

This says that henry was created as a FileTree object, so its most-specific
class is FileTree. You can get a list of all the classes that henry belongs to
using the “info heritage” query:

% henry info heritage
FileTree Tree

This says that first and foremost, henry is a FileTree, but it is also a Tree.
The classes are visited in this order whenever a method or a variable reference
needs to be resolved.

When you want to know if an object belongs to a certain class, you can check
its heritage. You can also use the built-in isa method to check for base
classes. You give isa a class name, and it returns non-zero if the class can be
found in the object’s heritage. For example:

% henry isa Tree
1
% henry isa VisualRep
0

This says that henry belongs to class Tree, but not to class VisualRep.

The “info function” query returns the list of class methods and procs. This
includes the built-in methods like configure, cget and isa as well:

% henry info function
FileTree::populate FileTree::contents FileTree::constructor Tree::configure
Tree::reorder Tree::cget Tree::isa Tree::constructor Tree::destructor
Tree::add Tree::back Tree::parent Tree::contents Tree::clear

Each function is reported with its full name, like Tree::add. This helps clarify
things if you inherit methods from a base class. You can retrieve more detailed
information if you ask for a particular function:

% henry info function contents
public method FileTree::contents {} {
 populate
 return [Tree::contents]
}

The “info variable” query returns the list of variables, which includes all
instance variables and common variables defined in the class, as well as the
built-in this variable:

% henry info variable
FileTree::mtime FileTree::file FileTree::this FileTree::procreate
Tree::lastSort Tree::sort Tree::children Tree::value Tree::name Tree::parent

Again, you can retrieve more detailed information if you ask for a particular
variable:

Tcl/Tk Tools

62

% henry info variable mtime
private variable FileTree::mtime 0 0

The last two elements represent the initial value and the current value of the
variable. In this case, they are both 0. But suppose we query the contents of the
file tree like this:

% henry contents
fileTree0 fileTree1 fileTree2 fileTree3 fileTree4 fileTree5 fileTree6
fileTree7 fileTree8 fileTree9 fileTree10 fileTree11 fileTree12 fileTree13
fileTree14 fileTree15

The populate method creates a series of child nodes, and saves the modification
time for this directory in the mtime variable, as a reminder that the file system
has been checked. If we query mtime again, we can see that it has changed:

% henry info variable mtime
private variable FileTree::mtime 0 845584013

You can obtain other high-level information via the usual Tcl info command.
You can ask for the list of classes in the current namespace like this:

% info classes
VisualFileTree FileTree Tree VisualRep

and for the list of objects in the current namespace like this:

% info objects
fileTree11 fileTree2 fileTree7 fileTree9 fileTree12 fileTree1 fileTree6
fileTree15 henry fileTree13 fileTree3 fileTree14 fileTree0 fileTree5
fileTree8 fileTree10 fileTree4

This introspection facility is extremely useful for debugging, and it could
support the construction of a class browser or an interactive development
environment.

As you are testing your code and finding bugs, you may want to fix things in a
class. You can use the body command to redefine the body of any method or
proc. You can also use the configbody command to change the configuration
code for a public variable.

This is particularly easy to do in the “tcl-mode” of the Emacs editor. You
simply load an [INCR TCL] script into Emacs, and tell Emacs to run it. As you
are testing it and finding bugs, you can make changes to your script and test
them out immediately. You don’t have to shut down and start over. Bodies can
be changed on the fly. You simply highlight a new body or configbody defini-
tion and tell Emacs to send it off to the test program.

If you don’t use Emacs, you can keep your body definitions in a separate file,
and you can use the Tcl source command to load them into a test program
again and again, as bugs are found and corrected.

Chapter 1: Object-Oriented Programming with [incr Tcl]

63

Although the bodies may change, the class interface cannot be defined more
than once. This prevents collisions that would otherwise occur if two devel-
opers chose the same class name by accident. But you can delete a class like
this:

delete class Tree

This deletes all objects that belong to the class, all derived classes which depend
on this class, and then deletes the class itself. At that point, you can source in
your script to redefine the class, and continue debugging.

Autoloading
Tcl provides a way to create libraries of procedures that can be loaded as
needed in an application. This facility is called autoloading, and it is supported
by [INCR TCL] as well.

To use a class library that has been set up for autoloading, you simply add the
name of the directory containing the library to the auto_path variable:

lappend auto_path /usr/local/oreilly/itcl/lib

The first time that a class is referenced in a command like this:

Tree henry -name "Henry Fonda"

the class definition is loaded automatically. The autoloading mechanism
searches each directory in the auto_path list for a special tclIndex file. This
file contains a list of commands defined in the directory, along with the script
file that should be loaded to define each command. When a command like
Tree is found in one of the tclIndex files, it is automatically loaded, and the
command is executed. The next time that this command is needed, it is ready to
use.

To create an autoloadable class library, you simply create a directory containing
all of the code for the library. Put each class definition in a separate file. These
files typically have the extension “.itcl” or “.itk”, but any naming convention
can be used. Finally, generate a tclIndex file for the directory using the
auto_mkindex command like this:

auto_mkindex /usr/local/oreilly/itcl/lib *.itcl

This scans all of the files matching the pattern “*.itcl” in the directory /usr/local/
oreilly/itcl/lib and creates a tclIndex file in that directory. Once the index file is
in place, the library is ready to use. Of course, the index file should be regener-
ated whenever the source code for the library changes.

Tcl/Tk Tools

64

Adding C code to[INCRTCL] Classes
With a little extra C code, we can extend the Tcl/Tk system to have new
commands and capabilities.† This is easy to do, and it is one area where Tcl/Tk
outshines other packages. C code can also be integrated into [INCR TCL]
classes, to implement the bodies of class methods and procs.

For example, suppose we write a C implementation for the add method in our
Tree class, shown in Example 1-21. Instead of specifying the body as a Tcl
script, we use the name @tree-add. The leading “@” sign indicates that this is
the symbolic name for a C procedure.

Somewhere down in the C code for our wish executable, we have a Tcl-style
command handler for the add method. We must give the command handler a
symbolic name by registering it with the Itcl_RegisterC procedure. We do
this in the Tcl_AppInit procedure, which is called automatically each time the
wish executable starts up. You can find the Tcl_AppInit procedure in the stan-
dard Tcl/Tk distribution, in a file called tclAppInit.c (for building tclsh) or
tkAppInit.c (for building wish). Near the bottom of this procedure, we add a
few lines of code like this:

if (Itcl_RegisterC(interp, "tree-add", Tree_AddCmd) != TCL_OK) {
 return TCL_ERROR;
}

This gives the symbolic name “tree-add” to the C procedure Tree_AddCmd.
This procedure will be called to handle any class method or class proc that has
the body “@tree-add”.

† For details, see John K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, 1994.

Example1-21 Tree class with a C implementation for the “add” method.

class Tree {
 variable parent ""
 variable children ""

 method add {obj} @tree-add

 method clear {} {
 if {$children != ""} {
 eval delete object $children
 }
 set children ""
 }
 method parent {pobj} {
 set parent $pobj
 }

 method contents {} {
 return $children
 }
}

Chapter 1: Object-Oriented Programming with [incr Tcl]

65

Example 1-22 shows the implementation for the Tree_AddCmd procedure. It
takes the usual arguments for a Tcl-style command handler: The first argument
is required but not used; interp is the interpreter handling a Tcl command;
argc is the number of arguments on the Tcl command line; and argv is the list
of Tcl argument strings.

This procedure has to mimic our add method. It takes the name of another Tree
object, and adds it to the list of children for the current node. Whenever

Example 1-22 Implementation for the Tree_AddCmd handler.

#include <tcl.h>
int
Tree_AddCmd(dummy, interp, argc, argv)
 ClientData dummy; /* unused */
 Tcl_Interp *interp; /* current interpreter */
 int argc; /* number of arguments */
 char **argv; /* argument strings */
{
 char *val;
 Tcl_DString buffer;

 if (argc != 2) {
 Tcl_AppendResult(interp, "wrong # args: should be \"",
 argv[0], " treeObj\"", (char*)NULL);
 return TCL_ERROR;
 }

 /*
 * Build a command string like "treeObj parent $this" and
 * execute it.
 */
 Tcl_DStringInit(&buffer);
 val = Tcl_GetVar(interp, "this", TCL_LEAVE_ERR_MSG);
 if (val == NULL) {
 Tcl_DStringFree(&buffer);
 return TCL_ERROR;
 }
 Tcl_DStringAppendElement(&buffer, argv[1]);
 Tcl_DStringAppendElement(&buffer, "parent");
 Tcl_DStringAppendElement(&buffer, val);
 val = Tcl_DStringValue(&buffer);

 if (Tcl_Eval(interp,val) != TCL_OK) {
 Tcl_DStringFree(&buffer);
 return TCL_ERROR;
 }
 Tcl_ResetResult(interp);

 /*
 * Add the specified object to the "children" list.
 */
 val = Tcl_SetVar(interp, "children", argv[1],
 TCL_LEAVE_ERR_MSG | TCL_LIST_ELEMENT | TCL_APPEND_VALUE);

 if (val == NULL) {
 Tcl_DStringFree(&buffer);
 return TCL_ERROR;
 }

 Tcl_DStringFree(&buffer);
 return TCL_OK;
}

Tcl/Tk Tools

66

Tree_AddCmd is called, therefore, we should have two argument strings: the
command name “add” (stored in argv[0]), and the name of the child object
(stored in argv[1]). We first check to make sure that this is true, and if not, we
immediately return an error.

Next, we build the command string “$obj parent $this” in a dynamic string
buffer. This command notifies the child that it has a new parent. We query the
value of the this variable using Tcl_GetVar. We build the command string in
a Tcl_DString buffer, and then use Tcl_Eval to execute the command.

The name of the child object is then appended to the children list using
Tcl_SetVar.

This implementation is identical to the Tcl version shown in Example 1-3,
although it requires many more C language statements to perform the same
task. In this case, the result is no better. The C version is not much faster, and
the Tcl version was considerably easier to write.

But the interesting part of this example is the interface between the C code and
the [INCR TCL] class. When the command handler is executed, class variables
can be accessed as ordinary variables. Class methods can be invoked as ordi-
nary commands. [INCR TCL] handles this automatically by setting up the object
context before the handler is invoked. Because of this, we were able to access
the children variable and the built-in this variable with ordinary Tcl_GetVar
and Tcl_SetVar calls.

Therefore, a single class can have some parts written in C code, and others
written in Tcl. The Tcl parts can be migrated to C for better performance as the
need arises.

Tcl is an excellent “glue” language. It stitches C code blocks together with Tcl
statements to form applications. [INCR TCL] takes the glue to a higher-level.
Bits of Tcl and C code can be mixed together to create classes. These high-
level building blocks provide better support for building larger applications.

Chapter 1: Object-Oriented Programming with [incr Tcl]

67

Summary

Extension: [incr Tcl] - Object-Oriented Programming for Tcl

Author: Michael J. McLennan
Bell Labs Innovations for Lucent Technologies
mmclennan@lucent.com

Other
Contributors:

Jim Ingham
Lee Bernhard
...and many others listed on the web site

Platforms
Supported:

All major Unix platforms
Linux
Windows 95 (release itcl2.2 and beyond)
Macintosh (release itcl2.2 and beyond)

Web Site: http://www.tcltk.com/itcl

Mailing List:
(bug reports)

mail -s "subscribe" itcl-request@tcltk.com
 to subscribe to the mailing list

mail itcl@tcltk.com
 to send mail

Tcl/Tk Tools

68

Quick Reference
Classes

Objects

class className {
 inherit baseClass ?baseClass...?

 constructor args ?init? body
 destructor body

 method name ?args? ?body?
 proc name ?args? ?body?

 variable varName ?init? ?configBody?
 common varName ?init?

 set varName ?value?
 array option ?arg arg ...?

 public command ?arg arg ...?
 protected command ?arg arg ...?
 private command ?arg arg ...?
}

Defines a new class of objects.

body className::function args body

Redefines the body for a class method or proc.

configbody className::varName body

Redefines the body of configuration code for a public variable
or a mega-widget option.

delete class name ?name...?

Deletes a class definition and all objects in the class

info classes ?pattern?

Returns a list of all classes, or a list of classes whose names
match pattern.

className objName ?arg arg ...?

Creates an object that belongs to class className.

Chapter 1: Object-Oriented Programming with [incr Tcl]

69

Namespaces

objName method ?arg arg ...?

Invokes a method to manipulate an object.

delete object objName ?objName...?

Deletes one or more objects.

info objects ?-class className? ?-isa className?
?pattern?

Returns a list of all objects, or a list of objects in a certain class
className, whose names match pattern.

namespace namespaceName {
 variable varName ?value?
 proc cmdName args body

 private command ?arg arg ...?
 protected command ?arg arg ...?
 public command ?arg arg ...?

command ?arg arg ...?
}

Finds an existing namespace or creates a new namespace and
executes a body of commands in that context. Commands like
proc andvariable create Tcl commands and variables that are
local to that namespace context.

namespaceName::cmdName ?arg arg ...?
namespaceName::namespaceName::...::cmdName ?arg arg ...?

Invokes a procedure that belongs to another namespace.

code command ?arg arg ...?

Formats a code fragment so it can be used as a callback in an-
other namespace context.

delete namespace namespaceName ?namespaceName...?

Deletes a namespace and everything in it.

Tcl/Tk Tools

70

import add name ?name...? ?-where pos...?
all ?name?
list ?importList?
remove name ?name...?

Changes the import list for a namespace.

info context

Returns the current namespace context.

info namespace all ?pattern?
namespace children ?name?
namespace parent ?name?

Returns information about the namespace hierarchy.

info namespace qualifiers string
namespace tail string

Parses strings with :: namespace qualifiers.

info protection ?-command? ?-variable? name

Returns the protection level (public/protected/private) for a
command or variable.

info which ?-command? ?-variable? ?-namespace? name

Searches for a command, variable or namespace and returns its
fully-qualified name.

scope string

Formats a variable name so it can be accessed in another
namespace context.

71

Chapter 2Tcl/Tk Tools

In this Chapter:

• Overview

• Simple Example

• Inheritance and
Composition

• Building
Applications with
Mega-Widgets

2
2:Building

Mega-Widgets
with [incr Tk]

Tk lets you create objects like buttons, labels,
entries, and so forth, but it is not truly object-
oriented. You can’t create a new widget class like
HotButton and have it inherit its basic behavior
from class Button. So you really can’t extend the
Tk widget set unless you tear apart its C code and
add some of your own.

[INCR TK] lets you create brand new widgets, using
the normal Tk widgets as component parts. These

mega-widgets look and act like ordinary Tk widgets, but you can create them
without writing any C code. Instead, you write an [INCR TCL] class to handle
each new type of mega-widget.

If you read Chapter XXX on the [INCR WIDGETS] library, you can see what
great results you’ll get using [INCR TK]. [INCR WIDGETS] has more than 30 new
widget classes including Fileselectionbox, Panedwindow, Canvasprintbox,
Optionmenu and Combobox, and they were all built with the [INCR TK]
framework.

You can understand the essence of a mega-widget simply by looking at one of
these widgets. For example, the Spinint widget shown in Figure 2-1 is created
like this:

spinint .s -labeltext "Repeat:" -width 5 -range {1 10}
pack .s

It has an entry component that holds a numeric value, and a pair of buttons for
adjusting that value. Whenever you create a Spinint widget, all of these

Tcl/Tk Tools

72

internal components are created and packed automatically. When you set the
-labeltext option, a label appears. You can set the -range option to control
the range of integer values. If you use the arrow buttons and bump the number
beyond this range, it will wrap around to the other end of the scale.

A Spinint can be configured like a normal Tk widget. It has many internal
components, but they all work together as one widget. All of their configura-
tion options are merged together into a single list called the master option list.
When you set master configuration options like this:

.s configure -background tan -textbackground white

the effects propagate down to all of the internal components. Setting the
-background option changes the background of the hull, label, uparrow and
downarrow components. Setting the -textbackground option changes the
background of the entry component.

A Spinint also has options to control the layout of its components. You can
rearrange the buttons like this:

.s configure -arroworient horizontal

and reposition the label like this:

.s configure -labelpos nw

You can even query the current option settings like this:

set bg [.s cget -background]

Of course, you can add all of these settings to the options database, so that
Spinint widgets will have these values by default:

option add *Spinint.background tan
option add *Spinint.textBackground white
option add *Spinint.arrowOrient horizontal
option add *Spinint.labelPos nw

A Spinint widget has a well-defined set of operations or methods to manipu-
late it. You can load a new integer into the text area like this:

Figure 2-1 A Spinint mega-widget has many component parts.

uparrow

downarrow

entrylabel

hull

Chapter 2: Building Mega-Widgets with [incr Tk]

73

.s clear

.s insert 0 "10"

and you can programmatically bump up the value like this:

.s up

When you destroy the widget:

destroy .s

all of its internal components are destroyed automatically.

Mega-widgets have all of the characteristics that we would expect from a Tk
widget. But since they do not require any C code or X library programming,
they are considerably easier to implement.

Overview
To understand [INCR TK], you have to understand how a mega-widget handles
its component parts and their configuration options. In this section, we’ll
explore [INCR TK] from a conceptual standpoint. Later on, we’ll look at real
code examples.

Class Hierarchy

To create a new type of mega-widget, you simply derive a new [INCR TCL] class
from one of the existing [INCR TK] base classes. The [INCR TK] class hierarchy
is shown in Figure 2-2. All of these classes reside in the itk namespace, so
they will not interfere with the rest of your application.

There are basically two different kinds of mega-widgets, so there are two [INCR

TK] base classes that you use to build them. If you want a mega-widget to pop
up in its own toplevel window, then have it inherit from itk::Toplevel. This
lets you build dialog widgets like the Fileselectiondialog, Messagedialog,
and Canvasprintdialog in the [INCR WIDGETS] library. Otherwise, if you
want a mega-widget to sit inside of some other toplevel window, then have it
inherit from the itk::Widget class. This lets you build things like the
Optionmenu, Combobox and Panedwindow in the [INCR WIDGETS] library.

Suppose we were starting from scratch to create the Spinint class. Spinint
widgets are the kind that sit inside of other toplevel windows, so we should use
the itk::Widget class as a starting point.

Both itk::Widget and itk::Toplevel inherit the basic mega-widget behavior
from itk::Archetype. This class keeps track of the mega-widget components
and their configuration options.

Tcl/Tk Tools

74

Class Definition

If we wanted to implement the Spinint widget, we would write a class defini-
tion that looks something like the one shown in Figure 2-3.†

Notice that we use a class name like Spinint that starts with a capital letter.
This is a rule in Tk. For the time being, you can assume that we also have to
create mega-widgets with a capitalized command like this:

Spinint .s -labeltext "Repeat:" -width 5 -range {1 10}

Later on, I will show you how to get around this.

Inside the class definition, we start off with an inherit statement that brings in
the itk::Widget base class. As we will see below, this automatically gives us
a container for the mega-widget called the hull. We write a constructor to
create all of the component widgets and pack them into the hull. Instead of
including the actual code, we simply illustrated this process in the constructor
shown in Figure 2-3.

Notice that the constructor uses the args argument to handle any configuration
options that might be specified when a widget is created, like this for example:

Spinint .s -labeltext "Number of Copies:" -background red

† The Spinint class in the [INCR WIDGETS] library is a little more complicated, but this example
will give you the basic idea.

Figure2-2 Mega-widgets are created by extending one of the base classes in [incr Tk].

itk::Archetype

Combobox Dialog

[incr Tk]

Messagedialog ...

itk::Toplevelitk::Widget

Chapter 2: Building Mega-Widgets with [incr Tk]

75

But instead of handling these arguments with:

eval configure $args

as we would for an ordinary [INCR TCL] class, we use:

eval itk_initialize $args

You must call itk_initialize instead of configure for all of your [INCR TK]
mega-widgets. This is a protected method that belongs to the itk::Archetype
base class. It not only applies the configuration changes, but it also makes sure
that all mega-widget options are properly initialized. If you forget to call it for
a particular class, some of the configuration options may be missing whenever
you create a mega-widget of that class.

Near the bottom of the class definition, we include some methods to handle the
operations for this mega-widget. As I said before, you can load a new value
into a Spinint widget like this:

.s clear

.s insert 0 "10"

So we have a method clear to clear the entry, and a method insert to insert
some new text. We also have a method called up to increment the value, and a
method called down to decrement it. We can add more operations to the
Spinint class simply by defining more methods.

Figure 2-3 Conceptual view of Spinint mega-widget class.

class Spinint {
 inherit itk::Widget

 constructor {args} {

 eval itk_initialize $args
 }

 public method clear {}
 public method insert {index value}

 public method up {}
 public method down {}
}

Tcl/Tk Tools

76

Notice that we didn’t define a destructor. The itk::Archetype base class
keeps track of the component widgets and destroys them for you when the
mega-widget is destroyed. You won’t need a destructor unless you have to
close a file or delete some other object when the mega-widget is destroyed.

Mega-Widget Construction

Let’s take a moment to see what happens when a mega-widget is constructed.
For example, suppose we create a Spinint widget like this:

Spinint .s -labeltext "Starting Page:" -range {1 67}

When [INCR TCL] sees this command, it creates an object named .s in class
Spinint, and calls its constructor with the remaining arguments. But before it
can actually run the Spinint::constructor, all of the base classes must be
fully constructed. This process is illustrated in Figure 2-4.

The constructor for the least-specific class itk::Archetype is called first. It
initializes some internal variables that keep track of the component widgets and
their configuration options. Next, the itk::Widget constructor is called. It
creates the hull frame that acts as a container for the component widgets. The
name of this frame widget is stored in a protected variable called
itk_interior. We will use this name later on as the root for component
widget names. Finally, the Spinint constructor is called. It creates the label,
entry and uparrow and downarrow components, and packs them into the hull.

Figure 2-4 Construction of a Spinint mega-widget.

-borderwidth

-background

-arroworient

-cursor

.

.

.

-cursor

-background

itk::Archetype::constructor
create component list
create master option list

itk::Widget::constructor
create hull component

Spinint::constructor
create label component
create entry component
create uparrow component
create downarrow component

Spinint .s -labeltext "Starting Page:" -range {1 67}

initialize itk_interior

.s

.s

.s

Chapter 2: Building Mega-Widgets with [incr Tk]

77

As each component is created, its configuration options are merged into a
master list of options for the mega-widget. We will see precisely how this is
done in the next section. But we end up with a mega-widget that has an overall
list of configuration options. Near the end of the Spinint constructor, we call
itk_initialize to finalize the list and apply any configuration changes.

Creating Component Widgets

Let’s look inside the constructor now and see how we create each of the mega-
widget components. Normally, when we create a Tk widget, we use a simple
command like this:

label .s.lab

This says that we have a frame called .s and we want to put a label named lab
inside it. For a mega-widget, we can’t hard-code the name of the containing
frame. It will be different for each widget that gets created. If we create a
Spinint named .s, it will have a hull named .s, and the label should be called
.s.lab. But if we create a Spinint named .foo.bar, it will have a hull named
.foo.bar, and the label should be called .foo.bar.lab. Instead of hard-
coding the name of a frame, we use the name in the itk_interior variable,
like this:

label $itk_interior.lab

We also have to do something special to let the mega-widget know that this is a
component. We wrap the widget creation command inside an itk_component
command like the one shown in Figure 2-5.

This command executes the code that you give it to create the component, and
saves the name of the resulting widget. It stores this name in a protected array
called itk_component, using the symbolic name as an index. When you want
to refer to the component later on, you can look it up in this array using its

Figure 2-5 Syntax of the itk_component command.

itk_component add label {
 label $itk_interior.lab
} {

keep -background
keep -foreground
keep -cursor

}

code used to create
the component

how to integrate
its configuration
options

symbolic name
for component

Possibilities:
keep
rename
usual
ignore

Tcl/Tk Tools

78

symbolic name. For example, in Figure 2-5 we created a label with the
symbolic name label. We can pack this component using its symbolic name,
like this:

pack $itk_component(label) -side left

The expression $itk_component(label) expands to a real widget path name
like .s.lab or .foo.bar.lab. We can use this in any of the methods in the
Spinint class to refer to the label component.

You can also use symbolic component names outside of the mega-widget class,
but you do it a little differently. The itk::Archetype class provides a method
called component that you can use to access components. If you call this
method without any arguments:

% Spinint .s
.s
% .s component
hull label entry uparrow downarrow

it returns a list of symbolic component names. You can also use this method to
reach inside the mega-widget and talk directly to a particular component. For
example, we might configure the label to have a sunken border like this:

.s component label configure -borderwidth 2 -relief sunken

Using symbolic names insulates you from the details inside of a mega-widget
class. Suppose we decide next week to rearrange the components, and we
change the name of the actual label widget from $itk_interior.lab to
$itk_interior.box.l1. Code inside the class like:

pack $itk_component(label) -side left

and code outside the class like:

.s component label configure -borderwidth 2 -relief sunken

will not have to change, since we used the symbolic name in both places.

The itk_component command does one other important thing. As you add
each component, its configuration options are merged into the master list of
options for the mega-widget. When you set a master option on the mega-
widget, it affects all of the internal components. When you set the master -back-
ground option, for example, the change is propagated to the -background
option of the internal components, so the entire background changes all at once.

You can control precisely how the options are merged into the master list by
using a series of commands at the end of the itk_component command. We
will explain all of the possibilities in greater detail below, but in Figure 2-5 we

Chapter 2: Building Mega-Widgets with [incr Tk]

79

used the keep command to merge the -background, -foreground and
-cursor options for the label into the master list.

All of the master configuration options are kept in a protected array called
itk_option. You can use this in any of the methods to get the current value
for a configuration option. It will save you a call to the usual cget method. For
example, if we were in some method like Spinint::insert, we could find out
the current background color using either of these commands:

set bg [cget -background] ;# a little slow
set bg $itk_option(-background) ;# better

But if you want to change an option, you can’t just set the value in this array.
You must always call the configure method, as shown below:

set itk_option(-background) red ;# error! color does not change
configure -background red ;# ok

As you can see, there is a close relationship between the itk_component
command, and the itk_component and itk_option arrays. Whenever you add
a new component, its symbolic name is added to the itk_component array, and
its configuration options are merged into the itk_option array. This relation-
ship is summarized in Figure 2-6.

Figure 2-6 How the itk_component command ties in with class variables.

Variable Description Example

itk_interior container for all
components in this
mega-widget

.s

itk_option array mapping
option names
to option values

itk_option(-background) gray
itk_option(-cursor) ""
itk_option(-foreground) black
...

itk_component array mapping
symbolic names
to real widget names

itk_component(label) .s.lab

itk_component add label {

 label $itk_interior.lab
} {

keep -background
keep -foreground
keep -cursor

}

Tcl/Tk Tools

80

Keeping Configuration Options

Each mega-widget has a master list of configuration options. When you set a
master option, it affects all of the internal components that are tied to that
option. For example, if we have a Spinint mega-widget named .s and we
configure its master -background option:

.s configure -background green

the change is automatically propagated down to the hull, label, uparrow, and
downarrow components. In effect, the overall background turns green with one
simple command. This is what you would naively expect, since a mega-widget
is supposed to work like any other Tk widget. But [INCR TK] has special
machinery under the hood that allows this to take place.

When you create a component widget, you can specify how its configuration
options should be merged into the master list. One possibility is to add compo-
nent options to the master list using the keep command. When you keep an
option, it appears on the master list with the same name. For example, in
Figure 2-7 we show two different Spinint components being created. The
label component keeps its -background, -foreground and -cursor options,
so these options are added directly to the master list. The entry component
keeps these same options, and keeps the -borderwidth option as well.

Figure2-7 Keeping component options on the master option list.

-background

-arroworient

-cursor

.

.

.

itk_component add label {
 label $itk_interior.lab
} {

keep -background
keep -foreground
keep -cursor

}

itk_component add entry {
 entry $itk_interior.ent
} {

keep -background
keep -foreground
keep -cursor
keep -borderwidth

}

-foreground

-borderwidth

-background

-arroworient

-cursor

.

.

.

-foreground

-cursor

-borderwidth

-background

-foreground

.

.

.

-cursor

-borderwidth

-background

-foreground

.

.

.

Chapter2: Building Mega-Widgets with [incr Tk]

81

When we configure a master option for the mega-widget, the change is propa-
gated down to all of the components that kept the option. This process is shown
in Figure 2-8.

When we configure the -background option, both the label and the entry are
updated, but when we configure -borderwidth, only the entry is updated.
Since we did not keep -borderwidth for the label, it is not affected by a change
in border width.

You must include a keep statement for each of the component options that you
want to access on the master list. The rest of the component options will be
ignored by default. It is usually a good idea to keep options like -background,
-foreground, -font and -cursor, which should be synchronized across all
components in the mega-widget. Options like -text or -command, which are
different for different components, should be ignored.

Renaming Configuration Options

Suppose you want to keep an option on the master list, but you want to give it a
different name. For example, suppose you want to have an option named -text-
background for the Spinint mega-widget that changes the background color of
the entry component. Having a separate option like this would let you highlight
the entry field with a contrasting color, so that it stands out from the rest of the
mega-widget. We want to keep the -background option for the entry compo-
nent, but we want to tie it to a master option with the name -textbackground.
We can handle this with a rename command like the one shown in Figure 2-9.

Figure2-8 Configuration changes are propagated down to component widgets.

-cursor

-borderwidth

-background

-foreground

.

.

.

-cursor

-borderwidth

-background

-foreground

.

.

.

-borderwidth

-background

-arroworient

-cursor

.

.

.

-foreground

.s configure -background tan -borderwidth 2

Tcl/Tk Tools

82

We could create another component and rename its -background option to
-textbackground as well. If we did, then both of these components would be
controlled by the master -textbackground option. We could even create a
component and rename its -foreground option to -textbackground. Again,
any change to a master option like -textbackground is propagated down to all
of the component options that are tied to it, regardless of their original names.

When you rename an option, you need to specify three different names for the
option: an option name for the configure command, along with a resource
name and a resource class for the options database. In Figure 2-9, we renamed
the entry’s -background option, giving it the name -textbackground, the
resource name textBackground, and the resource class Background. Each of
these names can be used as follows.

We can use the option name to configure the entry part of a Spinint mega-
widget like this:

.s configure -textbackground white

We can use the resource name in the options database to give all of our
Spinint mega-widgets this value by default:

option add *Spinint.textBackground white

Instead of setting a specific resource like textBackground, we could set a more
general resource class like Background:

Figure 2-9 Renaming component options on the master option list.

itk_component add entry {
 entry $itk_interior.ent
} {

rename -background -textbackground textBackground Background
keep -foreground
keep -cursor
keep -borderwidth

}

.

.

.

-cursor

-borderwidth

-background

-foreground

.

.

.

-arroworient

-textbackground

-background

-borderwidth

-cursor

-foreground

Chapter2: Building Mega-Widgets with [incr Tk]

83

option add *Spinint.Background blue

This affects all of the options in class Background, including both the regular
-background option and the -textbackground option. In this case, we set
both background colors to blue.

“Usual” Configuration Options

If you have to write keep and rename statements for each component that you
create, it becomes a chore. You will find yourself typing the same statements
again and again. For a label component, you always keep the -background,
-foreground, -font and -cursor options. For a button component, you keep
these same options, along with -activebackground, -activeforeground and
-disabledforeground.

Fortunately, the keep and rename statements are optional. If you don’t include
them, each widget class has a default set of keep and rename statements to fall
back on. These defaults are included in the [INCR TK] library directory, and
they are called the usual option-handling code. You can change the “usual”
code or even add “usual” code for new widget classes, as we’ll see later on.

You can ask for the “usual” options one of two ways, as shown in Figure 2-10.
You can either include the usual command in the option-handling commands
passed to itk_component, or you can leave off the option-handling commands
entirely. As you can see, the second way makes your code look much simpler.

Having the usual command is useful if you want to have most of the “usual”
options, but with a few changes. For example, suppose we are adding the entry
component to a Spinint. We can get all of the “usual” options, but then over-
ride how the -background option is handled. We can rename the -background
option to -textbackground like this:

Figure2-10 Adding a component with the “usual” option-handling code.

-borderwidth

-background

-arroworient

-cursor

.

.

.

itk_component add label {
 label $itk_interior.lab
} {
 usual
}

or

itk_component add label {
 label $itk_interior.lab
}

-cursor

-borderwidth

-background

-foreground

.

.

.
-foreground

Tcl/Tk Tools

84

itk_component add entry {
 entry $itk_interior.ent
} {

usual
 rename -background -textbackground textBackground Background
}

This is much better than the code shown in Figure 2-9. There are many entry
widget options like -insertbackground and -selectbackground that we had
ignored earlier. The “usual” code for an entry handles these properly, without
any extra work.

Ignoring Configuration Options

In addition to the keep, rename and usual commands, you can also ask for
certain options to be ignored using the ignore command. In most cases, this is
not really needed. If you include any option-handling code at all, it will start by
assuming that all options are ignored unless you explicitly keep or rename
them. But the ignore command is useful when you want to override something
in the “usual” code.

Suppose the “usual” option-handling code keeps an option like -foreground,
and you really want that option to be ignored for a particular component. You
can use the usual command to bring in the “usual” code, and then ignore a
particular option like this:

itk_component add entry {
 entry $itk_interior.ent
} {

usual
 ignore -foreground
}

Setting Widget Defaults

As we saw earlier, you can establish a default value for any mega-widget option
using the options database. For example, suppose we are creating an applica-
tion, and we set the following resources:

option add *Spinint.background blue
option add *Spinint.textBackground white

The “*Spinint” part says that these values apply to all Spinint widgets in the
application, regardless of their name or where they appear in the window hier-
archy. The “.background” and “.textBackground” parts access specific
resources on each Spinint widget.

Chapter 2: Building Mega-Widgets with [incr Tk]

85

Remember, a master option like -background may be tied to many component
widgets that kept or renamed that option. In this case, the -background option
of a Spinint is tied to the -background option of the hull, label, up and
down components. The default value for the Spinint background is automati-
cally propagated down to each of these components.

As a mega-widget designer, it is your responsibility to make sure that all of the
options in your mega-widget have good default values. It’s a good idea to
include settings like these just above each mega-widget class:

option add *Spinint.textBackground white widgetDefault
option add *Spinint.range "0 100" widgetDefault
option add *Spinint.arrowOrient horizontal widgetDefault
option add *Spinint.labelPos nw widgetDefault

All of these settings are given the lowest priority widgetDefault, so that you
can override them later on. You might add other option statements to
customize a particular application. On Unix platforms, the user might add
similar resource settings to a .Xdefaults or .Xresources file.

If you don’t provide a default value for an option, then its initial value is taken
from the component that first created the option. For example, we did not
include a default value for the background resource in the statements above. If
there is no other setting for background in the application, then the default
value will be taken from the hull component, which was the first to keep the
-background option. The hull is a frame, and its default background is prob-
ably gray, so the default background for the Spinint will also be gray. Many
times, the default values that come from components work quite well. But
when they do not, you should set the default explicitly with an option
statement.

Simple Example
Now that we understand how the components fit into a mega-widget, we can
see how everything works in a real example. In the previous chapter, we saw
how [INCR TCL] classes could be used to build a file browser. We wrote classes
to handle the file tree and its visual representation. We even wrote a few proce-
dures so that we could install a file tree on any canvas widget.

Now we can take this idea one step further. Instead of grafting our file tree onto
an external canvas, we can wrap the canvas and the file tree code into a
Fileviewer mega-widget. When we are done, we will be able to create a
Fileviewer like this:

Tcl/Tk Tools

86

Fileviewer .viewer -background LightSlateBlue -troughcolor NavyBlue
pack .viewer -expand yes -fill both -pady 4 -pady 4

and have it display a file tree like this:

.viewer display /usr/local/lib

This will create a widget that looks like the one shown in Figure 2-11. It has a
canvas to display the file tree, and a built-in scrollbar to handle scrolling. If you
click on a file or a folder, it becomes selected with a gray rectangle. If you
double-click on a folder, it expands or collapses the file hierarchy beneath it.

Now, we’ll write the Fileviewer class.

Fileviewer Construction

A complete code example appears in the file itcl/itk/fileviewer1.itk, but the
Fileviewer class itself is shown below in Example 2-1.

Figure 2-11 Fileviewer mega-widget.

Example 2-1 Class definition for the Fileviewer mega-widget.

option add *Fileviewer.width 2i widgetDefault
option add *Fileviewer.height 3i widgetDefault

class Fileviewer {
 inherit itk::Widget

 constructor {args} {
 itk_component add scrollbar {
 scrollbar $itk_interior.sbar -orient vertical \
 -command [code $itk_interior.canv yview]
 }
 pack $itk_component(scrollbar) -side right -fill y

 itk_component add display {
 canvas $itk_interior.canv -borderwidth 2 \
 -relief sunken -background white \
 -yscrollcommand [code $itk_interior.sbar set]
 } {
 keep -cursor -height -width
 keep -highlightcolor -highlightthickness
 rename -highlightbackground -background background Background

Chapter 2: Building Mega-Widgets with [incr Tk]

87

We start off by inheriting the basic mega-widget behavior from itk::Widget.
This means that the Fileviewer will be the kind of widget that sits inside of
another toplevel window, so we can use a Fileviewer component in many
different styles of file selection dialogs.

In the constructor, we create the components within each Fileviewer, and pack
them into the hull. We create a scrollbar component named scrollbar like this:

itk_component add scrollbar {
 scrollbar $itk_interior.sbar -orient vertical \
 -command [code $itk_interior.canv yview]
}

As we saw in Figure 2-6, we use $itk_interior as the root of the component
widget name. If we create a Fileviewer mega-widget named .fv, then
$itk_interior will also be .fv, and the scrollbar will be named .fv.sbar.

Since we didn’t include any keep or rename statements, we will get the “usual”
option-handling code for scrollbars. This automatically adds options like -back-
ground and -troughcolor to the master options for a Fileviewer. The
“usual” code ignores options like -orient and -command that are probably
unique to each scrollbar component. We really don’t want anyone using a
Fileviewer to change these options. We just set them once and for all when
the scrollbar is first created.

Notice that we used the code command to wrap up the code for the -command
option. This isn’t absolutely necessary, but it is a good idea for the reasons that
we discussed in the previous chapter. If you do something like this:

itk_component add scrollbar {
 scrollbar $itk_interior.sbar -orient vertical \
 -command "$itk_interior.canv yview"
}

it will still work, but the scrollbar command will take longer to execute. Each
time it tries to talk to the canvas widget, it will start looking for it in the global
namespace. Since the canvas is created in the Fileviewer constructor, its

 }
 pack $itk_component(display) -side left -expand yes -fill both

 eval itk_initialize $args
 }

 private variable root ""

 public method display {dir}

 private method createNode {dir}
 private proc cmpTree {option obj1 obj2}
}

Example 2-1 Class definition for the Fileviewer mega-widget.

Tcl/Tk Tools

88

access command is buried inside of the Fileviewer namespace, and it will take
a little longer to find.† The code command wraps up the scrollbar command so
that when it is needed later on, it will be executed right in the Fileviewer
namespace, so the canvas will be found immediately. Whenever you are config-
uring a component widget, you should always use a code command to wrap up
code fragments for options like -command or -yscrollcommand. Likewise, you
should also use a scope command to wrap up variable names for options like
-variable.

Once the scrollbar has been created, we can use its symbolic name in the
itk_component array to refer to it later on. For example, we pack the scrollbar
like this:

pack $itk_component(scrollbar) -side right -fill y

We create a canvas component called display in a similar manner. But instead
of getting the “usual” configuration options, we include explicit keep and
rename statements to merge its options into the master list:

itk_component add display {
 canvas $itk_interior.canv -borderwidth 2 \
 -relief sunken -background white \
 -yscrollcommand [code $itk_interior.sbar set]
} {
 keep -cursor -height -width
 keep -highlightcolor -highlightthickness
 rename -highlightbackground -background background Background
}

You can list all of the options in a single keep statement, or you can include lots
of different keep statements. In this case, we used two different keep state-
ments to make the code more readable. We did not keep the -background,
-borderwidth or -relief options. We simply fix their values when the
canvas is created. If you configure the -background option of a Fileviewer,
the rest of the widget will change, but the canvas background is not tied in, so it
will always remain white.

Notice that we renamed the -highlightbackground option to -background.
Whenever we configure the master -background option, the -highlightback-
ground option on the canvas component will be updated as well. If you don’t
do this, you will see a problem as soon as you change the master -background
option. Most of the background will change, but the focus highlight rings
inside the mega-widget will remain a different color. This rename trick fixes

† If this were an ordinary object, it wouldn’t be found at all. But there is some special code in the Tcl
unknown proc that finds widgets no matter where they are in the namespace hierarchy.

Chapter 2: Building Mega-Widgets with [incr Tk]

89

the problem. It is such a good trick that it is part of the “usual” option-handling
code that you normally get by default.

Fileviewer Methods

The Fileviewer class in Example 2-1 has one public method. If we have
created a Fileviewer named .viewer, we can tell it to display a certain direc-
tory by calling the display method:

.viewer display /home/mmc

The createNode method and the cmpTree proc are there only to help the
display method, so we make them private. We’ll see how they are used in a
moment.

A Fileviewer mega-widget works just like the file browser that we created in
Example 1-14. If you have forgotten all about VisualFileTree objects and
how we built the file browser, you should take a moment to remind yourself.

The implementation for the Fileviewer::display method is shown in
Example 2-2.

Each Fileviewer maintains a tree of VisualFileTree objects that represent
the files on its display. We use the private root variable to store the name of
the root object for the tree. Whenever we call the display method, we destroy
the existing file tree by destroying the root node, and then we start a new file
tree by creating a new root node. We configure the root node to the “open”
state, so that when it draws itself, it will display other files and folders below it.
Finally, we tell the root node to refresh itself, and it draws the entire file tree
onto the canvas.

Whenever we need to create a VisualFileTree node for the Fileviewer, we
call the createNode method, giving it the name of the file that we want to repre-
sent. The implementation of this method is shown in Example 2-3.

We start by creating a VisualFileTree object. Remember, its constructor
demands two arguments: the file that it represents, and the canvas that will
display it. We use the display component that we created for this Fileviewer

Example 2-2 Implementation for the Fileviewer::display method.

body Fileviewer::display {dir} {
 if {$root != ""} {
 delete object $root
 }
 set root [createNode $dir]
 $root configure -state open
 $root refresh
}

Tcl/Tk Tools

90

as the display canvas. We get the real window path name for this component
from the itk_component array, and we pass it into the VisualFileTree
constructor. We create the VisualFileTree object with the name “::#auto”
so we will get an automatically generated name like “::visualFileTree12”.
As I discussed earlier in the section “Using Objects Outside of Their
Namespace” in Chapter 1, this puts the object in the global namespace, so we
can share it with other classes like Tree that will need to access it.

We configure the -name and -sort options so that all files will be sorted alpha-
betically by name. We use the Fileviewer::cmpTree procedure as the
comparison function for lsort. If we were calling this procedure right now in
the context of Fileviewer, we could use a simple command like cmpTree.
But we are giving this command to a completely separate VisualFileTree
object, and it will be used later in the Tree::reorder method. In that context,
there is no command called cmpTree. Therefore, we cannot use a simple
command like “cmpTree -name”. We must wrap it up with the code command
like “[code cmpTree -name]”. Roughly translated, this means that the
Fileviewer is telling the VisualFileTree object: “When you need to
compare two VisualFileTree objects later on, come back to the current
(Fileviewer) context and call the cmpTree procedure. Since we’re friends,
I’m giving you access to my namespace and letting you use my private
procedure.”

We also configure the -procreate option so that all child VisualFileTree
nodes are created by the Fileviewer::createNode method. Remember, we
start with a single root node and build the file tree gradually, as needed. When
you double-click on a folder in the display, you open it and ask it to display its
contents. If it hasn’t already done so, the VisualFileTree object will scan the
file system at that point, and automatically create child nodes for the files within

Example 2-3 Implementation for the Fileviewer::createNode method.

body Fileviewer::createNode {fname} {
 set obj [VisualFileTree ::#auto $fname $itk_component(display)]

 $obj configure -name $fname \
 -sort [code cmpTree -name] \
 -procreate [code $this createNode]

 if {[file isdirectory $fname]} {
 $obj configure -icon dirIcon
 } elseif {[file executable $fname]} {
 $obj configure -icon programIcon
 } else {
 $obj configure -icon fileIcon
 }
 $obj configure -title [file tail $fname]

 return $obj
}

Chapter 2: Building Mega-Widgets with [incr Tk]

91

it. Whatever command we give for the -procreate option will be executed by
the VisualFileTree object in a completely different context. Again, we must
be careful to use the code command. But in this case, createNode is not just a
procedure, it is a method, so we must do something extra. We use the
command “[code $this createNode]”. Roughly translated, the Fileviewer
is telling the VisualFileTree object: “When you need to create a node later
on, talk to me. My name is $this, and you can use my createNode method.
This is usually a private method, but since we’re friends, I’m letting you back in
to the current (Fileviewer) namespace, and you can access createNode from
there.”

Near the end of the createNode method, we configure the VisualFileTree
object to display the file name and an icon that indicates whether the file is a
directory, a program or an ordinary file. When we are done configuring the
object, we return its name as the result of the createNode method.

Each node uses the Fileviewer::cmpTree procedure when sorting its child
nodes. This is a standard lsort-style procedure. It takes the names of two
VisualFileTree objects, compares them, and returns “+1” if the first goes after
the second, “-1” if the first goes before the second, and “0” if the order does not
matter. The implementation of the cmpTree procedure is shown in Example 2-4.

We have made this procedure general enough that we can use it to sort based on
any option of the VisualFileTree object. If we want an alphabetical listing,
we use -name for the option argument.† If we want to sort based on file size,
we use -value for the option argument, and we set the -value option to the
file size when each VisualFileTree object is created.

Fileviewer Creation Command

You create a Fileviewer widget like any other [INCR TCL] object—by using
the class name as a command:

† This is what we did in the createNode procedure shown above.

Example 2-4 Implementation for the Fileviewer::cmpTree procedure.

body Fileviewer::cmpTree {option obj1 obj2} {
 set val1 [$obj1 cget $option]
 set val2 [$obj2 cget $option]
 if {$val1 < $val2} {
 return -1
 } elseif {$val1 > $val2} {
 return 1
 }
 return 0
}

Tcl/Tk Tools

92

Fileviewer .viewer -background tan

Unfortunately, all of the other Tk widget commands have lower case letters. If
we want to follow the Tk convention, we should really have a command called
fileviewer to create a Fileviewer widget.

You might wonder: Why not just change the class name to fileviewer? We
could do this, but Tk has a convention that all widget class names start with a
capital letter. You should follow this same convention in [INCR TK]. If you
don’t, you’ll have trouble accessing defaults in the options database, and you’ll
have trouble with class bindings.

We simply need to add a fileviewer procedure that acts as an alias to the real
Fileviewer command, like this:

proc fileviewer {pathName args} {
 uplevel Fileviewer $pathName $args
}

This procedure takes a window path name and any option settings, and passes
them along to the Fileviewer command. Notice that pathName is a required
argument, so if you forget to specify a window path name, you’ll get an error.
We use the uplevel command so that the widget is created in the context of the
caller. After all, the caller wants ownership of whatever widget we create. If
we didn’t do this, the widget would be created in the namespace that contains
the fileviewer proc, and in some cases,† this can cause problems.

Defining New Configuration Options

So far, all of the configuration options for a mega-widget like Fileviewer have
been added by keeping or renaming options from its component widgets. But
what if you want to add a brand-new option that doesn’t belong to any of the
components?

For example, suppose we want to add a -selectcommand option to the
Fileviewer. This is something like the -command option for a Tk button. It
lets you configure each Fileviewer to do something special whenever you
select a node in its file tree.

As a trivial example, we could create a Fileviewer that prints out a message
when each file is selected, like this:

† Suppose we put the fileviewer proc in a namespace called utilities. Without the
uplevel command, the Fileviewer widgets that it creates would have their access commands
added to the utilities namespace. This would make it harder to access these widgets, and there-
fore slow down the application.

Chapter 2: Building Mega-Widgets with [incr Tk]

93

fileviewer .fv -selectcommand {puts "selected file: %n"}
pack .fv

We will set things up so that any %n fields in the command string will be
replaced with the name of the selected file. This mimics the Tk bind command,
and it makes it easy to know which file was selected whenever the command is
executed.

Having this feature opens the door for more interesting applications. We might
use it to create an image browser for a drawing program. Whenever you click
on a file in a recognized image format like GIF, TIFF or JPEG, the selection
command could load a thumbnail image that you could preview before clicking
OK.

The -selectcommand option is not kept or renamed from a component widget.
It is a brand-new option that we are adding to the Fileviewer class itself. If
this were an ordinary [INCR TCL] class, we would add a configuration option by
defining a public variable. You can do this for a mega-widget too, but if you
do, the option won’t be tied into the options database properly. Remember,
public variables have one name, but each widget option has three names: an
option name, a resource name, and a resource class.

Instead, when you define an option in a mega-widget class, you should use the
“itk_option define” command with the syntax shown in Figure 2-12.

Believe it or not, this looks a lot like a public variable declaration. It includes
the three names for the option, an initial value, and some code that should be
executed whenever the option is configured. Like a public variable, the configu-
ration code is optional, and you can specify it outside of the class definition
using a configbody command.

We can add the -selectcommand option to the Fileviewer class as shown in
Example 2-5. You can find the complete code example in the file itcl/itk/
fileviewer2.itk. We have also added a select method to the Fileviewer class.

Figure 2-12 Syntax of the “itk_option define” command.

itk_option define -selectcommand selectCommand Command "" {...}

option name

resource name

resource class

default value

config body

Tcl/Tk Tools

94

We’ll see in a moment how the -selectcommand option and the select
method work together.

Notice that the “itk_option define” statement appears outside of the
constructor, at the level of the class definition. Again, think of it as a public
variable declaration. It defines something about the class.

The -selectcommand option has the resource name selectCommand and the
resource class Command in the options database. Whenever a Fileviewer
widget is created, the options database is used to determine the initial value for
this option. If a value cannot be found for either of these names, the default
value (in this case, the null string) is used as a last resort.

Whenever a file is selected on the canvas, we’ll call the select method shown
in Example 2-5, giving it the name of the VisualFileTree object that was
selected. This method replaces all “%n” fields in the -selectcommand code
with the name of the selected file, and executes the resulting command. We are
careful to use “uplevel #0” instead of eval to evaluate the code. That way,
the code is executed in the global context, and if it uses any variables, they will
be global variables.

You might wonder how we know when a file has been selected. As you will
recall from Example 1-14, each VisualFileTree object has its own -select-
command option that is executed whenever a file is selected. We simply tell
each VisualFileTree node to call the Fileviewer::select method when a

Example 2-5 Adding the “-selectcommand” option to the Fileviewer mega-widget.

class Fileviewer {
 inherit itk::Widget

 constructor {args} {
 ...
 }

 itk_option define -selectcommand selectCommand Command ""

 private variable root ""

 public method display {dir}
 public method select {node}

 private method createNode {dir}
 private proc cmpTree {option obj1 obj2}
}

...

body Fileviewer::select {node} {
 set name [$node cget -name]
 regsub -all {%n} $itk_option(-selectcommand) $name cmd
 uplevel #0 $cmd
}

Chapter 2: Building Mega-Widgets with [incr Tk]

95

node is selected. We do this when each VisualFileTree node is created, as
shown in Example 2-6.

When you click on a file, the entire chain of events unfolds like this. Your click
triggers a binding associated with the file, which causes the VisualFileTree
object to execute its -selectcommand option. This, in turn, calls the select
method of the Fileviewer, which executes its own -selectcommand option. In
effect, we have used the primitive -selectcommand on each VisualFileTree
object to support a high-level -selectcommand for the entire Fileviewer.

As another example of a brand-new option, suppose we add a -scrollbar
option to the Fileviewer, to control the scrollbar. This option might have
three values. If it is on, the scrollbar is visible. If it is off, the scrollbar is
hidden. If it is auto, the scrollbar appears automatically whenever the file tree
is too long to fit on the canvas.

Example 2-7 shows the Fileviewer class with a -scrollbar option. You can
find a complete code example in the file itcl/itk/fileviewer3.itk.

Example 2-6 VisualFileTree nodes notify the Fileviewer of any selections.

body Fileviewer::createNode {fname} {
 set obj [VisualFileTree ::#auto $fname $itk_component(display)]

 $obj configure -name $fname \
 -sort [code cmpTree -name] \
 -procreate [code $this createNode] \

-selectcommand [code $this select %o]
 ...
}

Example 2-7 Adding the “-scrollbar” option to the Fileviewer mega-widget.

class Fileviewer {
 inherit itk::Widget

 constructor {args} {
 ...
 }

 itk_option define -selectcommand selectCommand Command ""

 itk_option define -scrollbar scrollbar Scrollbar "on" {
 switch -- $itk_option(-scrollbar) {
 on - off - auto {
 fixScrollbar
 }
 default {
 error "bad value \"$itk_option(-scollbar)\""
 }
 }
 }

 private variable root ""

 public method display {dir}
 public method select {node}

Tcl/Tk Tools

96

In this case, we have added some configuration code after the default “on”
value. Whenever the configure method modifies this option, it will execute
this bit of code to check the new value and bring the widget up to date. In this
case, we check the value of the -scrollbar option to make sure that it is on or
off or auto. You can always find the current value for a configuration option
in the itk_option array. If the value looks good, we use the fixScrollbar
method to update the scrollbar accordingly. If it does not have one of the
allowed values, we signal an error, and the configure method sets the option
back to its previous value, and then aborts with an error.

We must also call fixScrollbar whenever any conditions change that might
affect the scrollbar. Suppose the scrollbar is in auto mode. If we shorten the
widget, we might need to put up the scrollbar. If we lengthen the widget, we
might need to take it down. If we double-click on a file and expand or collapse
the file tree, again, we might need to fix the scrollbar. All of these conditions
trigger a change in the view associated with the canvas. To handle them, we
must make sure that fixScrollbar gets called whenever the view changes.
We do this by hijacking the normal communication between the canvas and the
scrollbar, as shown in Example 2-8.

Each time the view changes, the canvas calls its -yscrollcommand to notify the
scrollbar. In this case, it calls our fixScrollbar method instead, which checks
to see if the scrollbar should be visible, and updates it accordingly. The
fixScrollbar method then passes any arguments through to the scrollbar, so
the normal canvas/scrollbar communication is not interrupted.

 private method createNode {dir}
 private proc cmpTree {option obj1 obj2}

 private method fixScrollbar {args}
 private variable sbvisible 1
}

Example 2-8 Using fixScrollbar to handle changes in the canvas view.

class Fileviewer {
 inherit itk::Widget

 constructor {args} {
 ...
 itk_component add display {
 canvas $itk_interior.canv -borderwidth 2 \
 -relief sunken -background white \
 -yscrollcommand [code $this fixScrollbar]
 } {
 ...
 }
 pack $itk_component(display) -side left -expand yes -fill both
 eval itk_initialize $args
 }
 ...
}

Example 2-7 Adding the “-scrollbar” option to the Fileviewer mega-widget.

Chapter 2: Building Mega-Widgets with [incr Tk]

97

The fixScrollbar method is implemented as shown in Example 2-9.

First, we check the -scrollbar option and determine whether or not the
scrollbar should be visible, saving the result in the variable sbstate. If the
scrollbar is on or off, the answer is obvious. But if it is auto, we must check
the current view on the display canvas. If the entire canvas is visible, then the
view is “0 1”, and the scrollbar is not needed.

We then consult the sbvisible variable defined in Example 2-7 to see if the
scrollbar is currently visible. If the scrollbar needs to be put up, it is packed
into the hull. If it needs to be taken down, then the “pack forget” command is
used to unpack it.

Finally, we pass any extra arguments on to the set method of the scrollbar
component. Normally, there are no arguments, and this does nothing. But
having this feature lets the fixScrollbar method be used as the -yscrollcom-
mand for the canvas, without disrupting the normal communication between the
canvas and the scrollbar.

Defining “Usual” Options

When you add a component to a mega-widget, you must keep, rename or ignore
its configuration options. As we saw earlier, each of the Tk widget classes has
a default set of keep and rename statements to handle its configuration options

Example 2-9 Implementation for the Fileviewer::fixScrollbar method.

body Fileviewer::fixScrollbar {args} {
 switch $itk_option(-scrollbar) {
 on { set sbstate 1 }
 off { set sbstate 0 }

 auto {
 if {[$itk_component(display) yview] == "0 1"} {
 set sbstate 0
 } else {
 set sbstate 1
 }
 }
 }
 if {$sbstate != $sbvisible} {
 if {$sbstate} {
 pack $itk_component(scrollbar) -side right -fill y
 } else {
 pack forget $itk_component(scrollbar)
 }
 set sbvisible $sbstate
 }

 if {$args != ""} {
 eval $itk_component(scrollbar) set $args
 }
}

Tcl/Tk Tools

98

in the “usual” manner. There is even a usual statement to request the “usual”
option-handling code.

But what happens if you use a mega-widget as a component of a larger mega-
widget? What if you use a Fileviewer as a component within a larger
Fileconfirm mega-widget? Again, you must keep, rename or ignore the
configuration options for the Fileviewer component. And what if someone
asks for the “usual” option-handling code for a Fileviewer component? It is
your job as the mega-widget designer to provide this.

The option-handling commands for a new widget class are defined with a usual
declaration, like the one shown in Example 2-10.

Here, the keep commands refer to the overall options for a Fileviewer mega-
widget. Suppose you use a Fileviewer as a component in a Fileconfirm
mega-widget, and you ask for the “usual” options. Each of the options shown
above would be kept in the Fileconfirm option list. For example, if you set
the master -background option on a Fileconfirm, it would propagate the
change to the -background option of its Fileviewer component, which in turn
would propagate the change to the -background option on its scrollbar and the
-highlightbackground option on its canvas.

It is best to write the “usual” declaration at the last moment, after you have put
the finishing touches on a mega-widget class. You simply examine the master
configuration options one-by-one and decide if they should be kept, renamed or
ignored.

Only the most generic options should be kept or renamed in the “usual” declara-
tion for a widget class. If we had two Fileviewer components within a
Fileconfirm mega-widget, both of them might be tied to the Fileconfirm
option list in the “usual” way. Which options should they have in common?

Example 2-10 Defining the “usual” options for a Fileviewer component.

option add *Fileviewer.width 2i widgetDefault
option add *Fileviewer.height 3i widgetDefault
option add *Fileviewer.scrollbar auto widgetDefault

class Fileviewer {
 ...
}

usual Fileviewer {
keep -activebackground -activerelief
keep -background -cursor
keep -highlightcolor -highlightthickness
keep -troughcolor

}

proc fileviewer {pathName args} {
 uplevel Fileviewer $pathName $args
}

Chapter 2: Building Mega-Widgets with [incr Tk]

99

Options like -background, -foreground, -cursor and -font are all good
candidates for the keep command. On the other hand, options like -text,
-bitmap and -command are usually unique to each component, so options like
these should be ignored.

Inheritance and Composition
Mega-widgets can be used to build even larger mega-widgets. Like the Tk
widgets, mega-widgets support composition. One mega-widget can be used as
a component within another. But mega-widgets also support inheritance. One
mega-widget class can inherit all of the characteristics of another, and add its
own specializations. You are no longer limited to what a class like Fileviewer
provides. You can derive another class from it and add your own enhance-
ments. So a mega-widget toolkit can be extended in a way that transcends the
standard Tk widgets.

In this section, we explore how inheritance and composition can be used to
build mega-widgets. These relationships become even more powerful when
combined.

Designing a Base Class

Suppose we plan to build many different kinds of confirmation windows. We
may build a Messageconfirm mega-widget, which prompts the user with a
question and requests a Yes/No or OK/Cancel response. We may build a
Fileconfirm mega-widget, which gives the user a file browser to select a file,
and requests a Load/Cancel or Save/Cancel response.

Both of these mega-widgets have a common abstraction. They pop up in their
own toplevel window, they have OK/Cancel buttons at the bottom, and they
prevent the application from continuing until the user has responded. When
mega-widgets share a common abstraction like this, we can design a mega-
widget base class to handle it. In this case, we will create a base class called
Confirm which provides the basic functionality for a confirmation dialog.

A Confirm mega-widget looks like the one shown in Figure 2-13. It has an
empty area called the “contents” frame at the top, which can be filled in with
messages, file browsers, or whatever information is being confirmed. A sepa-
rator line sits between this frame and the OK and Cancel buttons at the bottom
of the dialog. This dialog always pops up on the center of the desktop, and it
locks out the rest of the application until the user has pressed either OK or
Cancel.

Tcl/Tk Tools

100

The class definition for a Confirm mega-widget is shown in Example 2-11. A
complete code example appears in the file itcl/itk/confirm.itk.

Figure 2-13 Generic Confirm mega-widget.

Example 2-11 The class definition for a Confirm mega-widget.

class Confirm {
 inherit itk::Toplevel

 constructor {args} {
 itk_component add contents {
 frame $itk_interior.contents
 }
 pack $itk_component(contents) -expand yes -fill both -padx 4 -pady 4

 itk_component add separator {
 frame $itk_interior.sep -height 2 \
 -borderwidth 1 -relief sunken
 }
 pack $itk_component(separator) -fill x -padx 8

 private itk_component add controls {
 frame $itk_interior.cntl
 }
 pack $itk_component(controls) -fill x -padx 4 -pady 8

 itk_component add ok {
 button $itk_component(controls).ok -text "OK" \
 -command [code $this dismiss 1]
 }
 pack $itk_component(ok) -side left -expand yes

 itk_component add cancel {
 button $itk_component(controls).cancel -text "Cancel" \
 -command [code $this dismiss 0]
 }
 pack $itk_component(cancel) -side left -expand yes

 wm withdraw $itk_component(hull)
 wm group $itk_component(hull) .
 wm protocol $itk_component(hull) \
 WM_DELETE_WINDOW [code $this dismiss]

 after idle [code $this centerOnScreen]
 set itk_interior $itk_component(contents)

 eval itk_initialize $args
 }

 private common responses

Chapter 2: Building Mega-Widgets with [incr Tk]

101

The Confirm class inherits from the itk::Toplevel base class, so each
Confirm widget pops up with its own toplevel window. We create a frame
component called contents to represent the “contents” area at the top of the
window. We use another frame component called separator to act as a sepa-
rator line, and we add two button components called ok and cancel at the
bottom of the window. Note that the ok and cancel components sit inside of a
frame component called controls. This frame was added simply to help with
packing.

When you have a component like controls that is not an important part of the
mega-widget, you can keep it hidden. You simply include a protected or
private declaration in front of the itk_component command. This is the same
protected or private command that you would normally use in a namespace
to restrict access to a variable or procedure. It simply executes whatever
command you give it, and it sets the protection level of any commands or vari-
ables created along the way. When a mega-widget component is marked as
protected or private, it can be used freely within the mega-widget class, but it
cannot be accessed through the built-in component method by anyone outside
of the class.

Once we have created all of the components, we do a few other things to
initialize the Confirm widget. Since this is a toplevel widget, we use the wm
command to tell the window manager how it should handle this window. We
ask the window manager to withdraw the window, so that it will be invisible
until it is needed. We group it with the main window of the application. Some
window managers use the group to iconify related windows when the main
application window is iconified. We also set the “delete” protocol, so that if the
window manager tries to delete the window, it will simply invoke the dismiss
method, as if the user had pressed the Cancel button.

In all of these commands, we are talking to the window manager about a
specific toplevel window—the one that contains our Confirm mega-widget.
Remember, the container for any mega-widget is a component called the hull,
which in this case is created automatically by the itk::Toplevel base class.
The window manager won’t understand a symbolic component name like hull,
so we give it the real window path name stored in itk_component(hull).

 public method confirm {}
 public method dismiss {{choice 0}}

 protected method centerOnScreen {}
}

Example 2-11 The class definition for a Confirm mega-widget.

Tcl/Tk Tools

102

When the Confirm mega-widget appears, we want it to be centered on the
desktop. We have a method called centerOnScreen that determines the overall
size of the dialog, and uses the “wm geometry” command to position it on the
desktop. You can find the implementation of this method in the file itcl/itk/
confirm.itk. The details are not particularly important. We should call this
method once, when the widget is first created. But we can’t call it directly in
the constructor. At this point, we haven’t finished building the Confirm dialog.
As we’ll see shortly, more widgets need to be created and packed into the
“contents” frame. If we call centerOnScreen too early, the dialog will be
centered based on its current size, and when more widgets are added, it will
appear to be off-center.

This situation arises from time to time—you want something to happen after
construction is complete. You can handle this quite easily with the Tk after
command. Normally, you give after a command and a certain time interval,
and the command is executed after that much time has elapsed. In this case, we
don’t care exactly when centerOnScreen is called, so instead of using a
specific time interval, we use the key word idle. This tells after to execute
the command at the first opportunity when the application is idle and has
nothing better to do. Again, since the centerOnScreen method will be called
in another context, long after we have returned from the constructor, we are
careful to include the object name $this, and to wrap the code fragment with
the code command.

As always, we finish the construction by calling itk_initialize to initialize
the master option list and apply any option settings.

A Confirm widget can be created and packed with a label like this:

confirm .ask
set win [.ask component contents]
label $win.message -text "Do you really want to do this?"
pack $win.message

Although we did not explicitly create options for the labels on the OK/Cancel
buttons, we can still change them like this:

.ask component ok configure -text "Yes"

.ask component cancel configure -text "No"

Sometimes it is better to access individual components like this, instead of
adding more options to the master option list. If a mega-widget has too many
options, it is difficult to learn and its performance suffers.

Whenever a confirmation is needed, the confirm method can be used like this:

Chapter 2: Building Mega-Widgets with [incr Tk]

103

if {[.ask confirm]} {
 puts "go ahead"
} else {
 puts "abort!"
}

The confirm method pops up the Confirm window, waits for the user’s
response, and returns 1 for OK and 0 for Cancel. The if statement checks the
result and prints an appropriate message.

The confirm method is implemented as shown in Example 2-12.

First, we ask the window manager to pop up the window using the
“wm deiconify” command, and we set a grab on the window. At this point, all
other windows in the application will be unresponsive, and the user is forced to
respond by pressing either OK or Cancel. The default focus is assigned to the
OK button, so the user can simply press the space bar to select OK.

The tkwait command stops the normal flow of execution until the user has
responded. In this case, we watch a particular variable that will change as soon
as the user presses either OK or Cancel. Each Confirm widget should have its
own variable for tkwait. Normally, we would use an object variable for some-
thing like this, but there is no way to pass an object variable to a command like
tkwait. The scope operator will capture the namespace context for a variable,
but not the object context. So the scope command works fine for common
class variables, but not for object variables. We can use the following trick to
get around this problem: We define a common array called responses, and we
assign each widget a slot with its name $this. As long as we wrap each slot
responses($this) in the scope command, we have no trouble passing it along
to tkwait.

Thanks to the -command option of the ok and cancel components, pressing OK
invokes the dismiss method with the value 1, and pressing Cancel invokes the
dismiss method with the value 0. The dismiss method itself is quite trivial.
Its body is shown in Example 2-13.

Example 2-12 Implementation for the Confirm::confirm method.

body Confirm::confirm {} {
 wm deiconify $itk_component(hull)
 grab set $itk_component(hull)
 focus $itk_component(ok)

 tkwait variable [scope responses($this)]

 grab release $itk_component(hull)
 wm withdraw $itk_component(hull)

 return $responses($this)
}

Tcl/Tk Tools

104

It simply stores whatever value you give it in the responses array. But if we’re
sitting at the tkwait instruction in the confirm method, this is just what we’re
looking for. Setting this variable causes tkwait to return control, and execution
resumes within the confirm method. We release the grab, hide the dialog, and
return the user’s response.

The Confirm mega-widget is useful in its own right, but it can be even more
useful as the basis of other mega-widget classes. Derived classes like
Messageconfirm and Fileconfirm can inherit most of the basic functionality,
and simply add a few components into the contents frame.

But how do derived classes know that they are supposed to use the contents
frame? We use the variable itk_interior to track this. In the itk::Widget or
itk::Toplevel base class, itk_interior is set to the window path name of
the hull component. In the Confirm base class, we create components in this
interior, and then change itk_interior to the window path name of the
contents frame. Derived classes create components in this interior, and
perhaps change itk_interior to their own innermost window. If all classes
use itk_interior like this, making classes work together becomes a simple
matter of changing their inherit statements.

Using Inheritance

We can continue with the example described above, using inheritance to create
a Messageconfirm mega-widget like the one shown in Figure 2-14. A
Messageconfirm is-a Confirm, but it has an icon and a text message in the
contents frame.

The class definition for Messageconfirm is shown in Example 2-14. A
complete code example appears in the file itcl/itk/messageconfirm.itk.

Example 2-13 Implementation for the Confirm::dismiss method.

body Confirm::dismiss {{choice 0}} {
 set responses($this) $choice
}

Figure 2-14 A Messageconfirm mega-widget.

Chapter 2: Building Mega-Widgets with [incr Tk]

105

By inheriting from the Confirm class, Messageconfirm automatically has its
own toplevel window with a contents frame, a separator line, and OK and
Cancel buttons. It has confirm and dismiss methods, and it automatically
comes up centered on the desktop.

It has the same basic configuration options too, but it does not inherit any
default settings from the base class. If you have defined some resource settings
for the Confirm class, like this:

option add *Confirm.background blue widgetDefault
option add *Confirm.foreground white widgetDefault

you will have to repeat those settings for the derived class:

option add *Messageconfirm.background blue widgetDefault
option add *Messageconfirm.foreground white widgetDefault

In its constructor, the Messageconfirm adds an icon component, which repre-
sents the bitmap icon to the left of the message. We use the usual command in
the option-handling commands for this component to integrate most of its
options in the “usual” manner, but we rename the -bitmap option, calling it
-icon in the master list. This is a better name for the option, since it indicates
which bitmap we are controlling.

The Messageconfirm also adds a message component, which represents the
message label. Again, we use the usual command to integrate most of its
options, but we rename the -text option, calling it -message in the master list.

As always, we create these two component widgets with the root name
$itk_interior. But in this case, $itk_interior contains the name of the

Example 2-14 Class definition for a Messageconfirm mega-widget.

 class Messageconfirm {
 inherit Confirm

 constructor {args} {
 itk_component add icon {
 label $itk_interior.icon -bitmap questhead
 } {
 usual
 rename -bitmap -icon icon Bitmap
 }
 pack $itk_component(icon) -side left

 itk_component add message {
 label $itk_interior.mesg -wraplength 3i
 } {
 usual
 rename -text -message message Text
 }
 pack $itk_component(message) -side left -fill x

 eval itk_initialize $args
 }
}

Tcl/Tk Tools

106

contents frame that we created in the constructor for base class Confirm. So
these new components automatically sit inside of the contents frame, as I
explained earlier.

We might create a Messageconfirm widget like this:

messageconfirm .check -background tomato -icon warning \
 -message "Do you really want to do this?"

and use it like this:

if {[.check confirm]} {
 puts "go ahead"
} else {
 puts "abort!"
}

With a simple inherit statement and just a few lines of code, we have created
a very useful widget.

Mixing Inheritance and Composition

Inheritance is a powerful technique, but so is composition. Many good designs
use both relationships. For example, suppose we create a Fileconfirm mega-
widget like the one shown in Figure 2-15. A Fileconfirm is-a Confirm, and
has-a Fileviewer component packed into the contents frame. It also has-a
entry component packed into the contents frame. When the user selects a file,
its name is automatically loaded into the entry component. Of course, the user
can also edit this name, or type an entirely different name into the entry
component.

Figure 2-15 A Fileconfirm mega-widget.

Chapter 2: Building Mega-Widgets with [incr Tk]

107

The class definition for Fileconfirm is shown in Example 2-15. A complete
code example appears in the file itcl/itk/fileconfirm.itk.

Again, by inheriting from the Confirm class, Fileconfirm automatically has its
own toplevel window with a contents frame, a separator line, and OK and
Cancel buttons. It has confirm and dismiss methods, and it automatically
comes up centered on the desktop.

In its constructor, Fileconfirm adds a Fileviewer component. It also adds a
File: label and an entry component at the bottom of the contents frame. These
are three separate components, but they interact within the Fileconfirm in the
following manner. When the user selects a file, the Fileviewer executes its
-selectcommand code, which calls the Fileconfirm::select method with the
selected file name substituted in place of %n. The select method then loads the
file name into the entry component. Whatever name is sitting in the entry
component is treated as the official file selection. At any point, you can use the
Fileconfirm::get method to get the file name sitting in the entry component.

Example 2-15 Class definition for a Fileconfirm mega-widget.

 class Fileconfirm {
 inherit Confirm

 constructor {args} {
 itk_component add fileTree {
 fileviewer $itk_interior.files \
 -selectcommand [code $this select %n]
 }
 pack $itk_component(fileTree) -expand yes -fill both

 itk_component add fileLabel {
 label $itk_interior.flabel -text "File:"
 }
 pack $itk_component(fileLabel) -side left -padx 4

 itk_component add fileEntry {
 entry $itk_interior.fentry
 }
 pack $itk_component(fileEntry) -side left -expand yes -fill x

 eval itk_initialize $args
 }

 itk_option define -directory directory Directory "" {
 $itk_component(fileTree) display $itk_option(-directory)
 }

 public method get {} {
 return [$itk_component(fileEntry) get]
 }
 protected method select {name} {
 $itk_component(fileEntry) delete 0 end
 $itk_component(fileEntry) insert 0 $name
 }
}

Tcl/Tk Tools

108

The -directory option controls the top-level directory in the Fileconfirm.
Whenever it is configured, it automatically invokes the display method of the
Fileviewer to update the display.

We might create a Fileconfirm widget like this:

fileconfirm .files -directory $env(HOME)

and use it like this:

if {[.files confirm]} {
 puts "selected file: [.files get]"
} else {
 puts "abort!"
}

We use the confirm method to pop up the dialog and wait for the user to select
a file and press OK or Cancel. If he pressed OK, we use the get method to get
the name of the selected file, and we print it out.

We leveraged the Confirm class with inheritance, and the Fileviewer class
with composition. Together, these two techniques produce a complex widget
with just a little extra code.

Reviving Options

Sometimes a derived class needs to override the way a base class handles its
configuration options. For example, suppose we want to define the -width and
-height options of a Fileviewer widget so that they represent the overall
width and height, including the scrollbar. Previously, we kept the -width and
-height options from the canvas component, so the overall width was a little
bigger when the scrollbar was visible. Instead, we need to keep the -width and
-height options from the hull component. But the hull component is created
in the itk::Widget base class, and we can’t modify that code.

Options that belong to a base class component can be revived in a derived class
using the “itk_option add” command. You simply tell the mega-widget to
add an option that was previously ignored back into the master list. A complete
code example appears in the file itcl/itk/fileviewer4.itk, but the important parts
are shown in Example 2-16.

Example 2-16 Options can be revived using “itk_option add”.

option add *Fileviewer.width 2i widgetDefault
option add *Fileviewer.height 3i widgetDefault
option add *Fileviewer.scrollbar auto widgetDefault

class Fileviewer {
 inherit itk::Widget

 constructor {args} {

Chapter 2: Building Mega-Widgets with [incr Tk]

109

The “itk_option add” command is different from the “itk_option define”
command that we saw earlier. You use “itk_option define” as part of a
class definition to define a new configuration option. On the other hand, you
use “itk_option add” in the constructor (or in any other method) to reinstate a
configuration option that already exists but was ignored by a base class. The
“itk_option add” command can appear anywhere in the constructor, but it is
normally included near the top. It should be called before itk_initialize,
since options like -width and -height might appear on the args list.

Each option is referenced with a name like “component.option” if it comes
from a component, or with a name like “class::option” if it comes from an
“itk_option define” command. In either case, option is the option name
without the leading “-” sign. In this example, we are reviving the -width and
-height options of the hull component, so we use the names hull.width and
hull.height. Fileviewer widgets will behave as if these options had been
kept when the component was first created.

Now that we have reinstated the -width and -height options, we must make
sure that they work. Frames normally shrink-wrap themselves around their
contents, but we can use the “pack propagate” command to disable this, so
the hull will retain whatever size is assigned to it. We also set the width and
height of the canvas to be artificially small, but we pack it to expand into any
available space.

Suppressing Options

Options coming from a base class can be suppressed using the
“itk_option remove” command. But this command should be used carefully.

 itk_option add hull.width hull.height
 ...
 itk_component add display {
 canvas $itk_interior.canv -borderwidth 2 \
 -relief sunken -background white \
 -yscrollcommand [code $this fixScrollbar] \
 -width 1 -height 1
 } {
 keep -cursor
 keep -highlightcolor -highlightthickness
 rename -highlightbackground -background background Background
 }
 pack $itk_component(display) -side left -expand yes -fill both

 eval itk_initialize $args

 pack propagate $itk_component(hull) 0
 bind $itk_component(display) <Configure> [code $this fixScrollbar]
 }
 ...
}

Example 2-16 Options can be revived using “itk_option add”.

Tcl/Tk Tools

110

A derived class like Fileviewer should have all of the options defined in its
base class itk::Widget. After all, a Fileviewer is-a Widget. An option
should be suppressed in the base class only if it is being redefined in the derived
class.

For example, suppose we want to change the meaning of the -cursor option in
the Fileviewer widget. We set things up previously so that when you
configure the master -cursor option, it propagates the change down to all of
the components in the Fileviewer. Suppose instead that we want the -cursor
option to affect only the display component. That way, we could assign a
special pointer for selecting files, but leave the scrollbar and the hull with their
appropriate default cursors.

To do this, we must keep the -cursor option on the display component, but
avoid keeping it on the scrollbar and hull components. A complete code
example appears in the file itcl/itk/fileviewer5.itk, but the important parts are
shown below in Example 2-17.

Since we create the scrollbar component in class Fileviewer, we can simply
fix its option-handling code to suppress the -cursor option. We integrate its
options in the “usual” manner, but we specifically ignore its -cursor option.
The hull component, on the other hand, is created in the itk::Widget base
class, and we can’t modify that code. Instead, we use the

Example 2-17 Options can be suppressed using “itk_option remove”.

option add *Fileviewer.width 2i widgetDefault
option add *Fileviewer.height 3i widgetDefault
option add *Fileviewer.scrollbar auto widgetDefault
option add *Fileviewer.cursor center_ptr widgetDefault

class Fileviewer {
 inherit itk::Widget

 constructor {args} {
 itk_option add hull.width hull.height
 itk_option remove hull.cursor

 itk_component add scrollbar {
 scrollbar $itk_interior.sbar -orient vertical \
 -command [code $itk_interior.canv yview]
 } {
 usual
 ignore -cursor
 }
 ...

 eval itk_initialize $args
 component hull configure -cursor ""

 pack propagate $itk_component(hull) 0
 bind $itk_component(display) <Configure> [code $this fixScrollbar]
 }
 ...
}

Chapter 2: Building Mega-Widgets with [incr Tk]

111

“itk_option remove” command to disconnect its-cursor option from the
master list. We create thedisplay component just as we did before, keeping
its -cursor option. Having done all this, we can configure the master-cursor
option, and it will affect only thedisplay component.

We might even add a default cursor like this:

option add *Fileviewer.cursor center_ptr widgetDefault

Whenever we create a newFileviewer widget, its-cursor option will be
center_ptr by default, so the file area will have a cursor that is more suitable
for selecting files.

At this point, the example should be finished. But there is one glitch that keeps
this example from working properly. Unfortunately, when you set a resource
on a class likeFileviewer, it affects not only the masterFileviewer options,
but also the options on thehull component that happen to have the same
name. We were careful to disconnect the hull from the master-cursor option,
but unless we do something, the hull will think its default cursor should be
center_ptr. Even though it is not connected to the master option, it will acci-
dentally get the wrong default value.

We can counteract this problem by explicitly configuring thehull component
in theFileviewer constructor like this:

component hull configure -cursor ""

So the hull will indeed get the wrong default value, but we have explicitly set it
back to its default value, which is the null string.† This problem is rare. It
occurs only when you try to suppress one of the hull options like-cursor,
-borderwidth or -relief, and yet you set a class resource in the options data-
base. It is easily fixed with an explicit configuration like the one shown above.

Building Applications with Mega-Widgets
Using mega-widgets as building blocks, applications come together with aston-
ishing speed. Consider thewidgetree application shown in Figure2-16, which
is modeled after thehierquery program.‡ It provides a menu of Tcl/Tk appli-
cations that are currently running on the desktop. When you select a target
application, its widget hierarchy is loaded into the main viewer. You can
double-click on any widget in the tree to expand or collapse the tree at that
point. If you select a widget and press theConfigure button, you will get a

† In Tk, widgets with a null cursor inherit the cursor from their parent widget.
‡ David Richardson, “Interactively Configuring Tk-based Applications,”Proceedings of the Tcl/Tk
Workshop, New Orleans, LA, June 23-25, 1994.

Tcl/Tk Tools

112

panel showing its configuration options. You can change the settings in this
panel and immediately apply them to the target application. This tool is a great
debugging aid. It lets you explore an unfamiliar Tk application and quickly
make changes to its appearance.

The widgetree application was built with a handful of mega-widgets and about
100 lines of Tcl/Tk code. Most of the mega-widgets came off-the-shelf from
the [INCR WIDGETS] library, described in Chapter XXX. The application menu
is an Optionmenu widget. The panel of configuration options is a Dialog with
an internal Scrolledframe containing Entryfield widgets, which represent
the various configuration options.

We developed one customized mega-widget for this application: a
Widgetviewer class to manage the widget tree. You can find the code for the
Widgetviewer class in the file itcl/widgetree/widgetviewer.itk. The details are
not all that important. As you might have noticed, the Widgetviewer looks
suspiciously like a Fileviewer. It has a display component and a scrollbar
component, and it stores its data using VisualWidgetTree objects. Like the
VisualFileTree class, the VisualWidgetTree class inherits from the Tree
and VisualRep classes developed in the previous chapter. But instead of popu-
lating itself with nodes that represent files, each VisualWidgetTree object
populates itself with nodes that represent child widgets. When you expand a

Figure 2-16 The “widgetree” application lets you explore any Tk application.

Chapter 2: Building Mega-Widgets with [incr Tk]

113

VisualWidgetTree node on the display, you trigger a call to its contents
method and the node populates itself. It sends the “winfo children”
command to the target application, gets a list of child widgets, and creates other
VisualWidgetTree objects to represent the children.

The widgetree application has many different classes that all contribute to its
operation. You can find the code for this application in the file itcl/widgetree/
widgetree. Rather than present the code here, we will simply comment on the
way that these classes were used to structure the code.

The relationships between these classes are a mixture of inheritance and compo-
sition. They can be diagrammed using the OMT notation† as shown in Figure 2-
17. A Widgetviewer is-a itk::Widget, and it has-a VisualWidgetTree root
object. A VisualWidgetTree is both a WidgetTree and a VisualRep, and a
WidgetTree is-a Tree.

The same application can be built without objects and mega-widgets, but it
requires more code, and the final result might not have as many finishing
touches. For example, the configuration options for our widgetree application
are presented on a scrollable form, in case the list is long. Nodes in the widget
tree can be expanded or collapsed, and a scrollbar comes and goes as needed.
Many developers avoid writing extra code for features like these. With mega-
widgets, the code can be written once and reused again and again on future
projects. This makes Tcl/Tk even more effective for building large applications.

† James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and William Lorensen, Ob-
ject-Oriented Modeling and Design, Prentice-Hall, 1991.

Figure 2-17 The “widgetree” application has many different classes working together.

itk::Archetype

itk::Widget

Widgetviewer

WidgetTree

[incr Tk]

VisualWidgetTree

Tree

VisualRep

Tcl/Tk Tools

114

Summary

Extension: [incr Tk] - Mega-Widget Framework

Author: Michael J. McLennan
Bell Labs Innovations for Lucent Technologies
mmclennan@lucent.com

Other
Contributors:

Mark L. Ulferts
Jim Ingham
...and many others listed on the web site

Platforms
Supported:

All major Unix platforms
Linux
Windows 95 (release itcl2.2 and beyond)
Macintosh (release itcl2.2 and beyond)

Web Site: http://www.tcltk.com/itk

Mailing List:
(bug reports)

mail -s "subscribe" itcl-request@tcltk.com
 to subscribe to the mailing list

mail itcl@tcltk.com
 to send mail

Chapter 2: Building Mega-Widgets with [incr Tk]

115

Quick Reference
Public Methods

The following methods are built into all mega-widgets. If you have created a
mega-widget with the Tk name pathName, you can access these methods as
follows:

Protected Methods

The following methods are used within a mega-widget class as part of its
implementation:

pathName cget -option

Returns the current value for any mega-widget option. Works
just like the usual cget method in Tk.

pathName component ?symbolicName? ?command arg arg ...?

Provides access to well-known components within a mega-
widget.

pathName configure ?-option? ?value -option value ...?

Used to query or set mega-widget options. Works just like the
usual configure method in Tk.

itk_component add symbolicName {
widget pathName ?arg arg...?

}

or

itk_component add symbolicName {
widget pathName ?arg arg...?

} {
 ignore -option ?-option -option ...?
 keep -option ?-option -option ...?
 rename -option -newName resourceName resourceClass
 usual ?tag?
}

Creates a widget and registers it as a mega-widget compo-
nent. The extra ignore, keep, rename and usual commands
control how the configuration options for this component are
merged into the master option list for the mega-widget.

Tcl/Tk Tools

116

Protected Variables

The following variables can be accessed within a mega-widget class:

itk_option add optName ?optName optName...?

where optName is component.option or className::option.
Adds an option that was previously ignored back into the
master option list.

itk_option remove optName ?optName optName...?

where optName is component.option or className::option.
Removes an option that was previously merged into the mas-
ter option list.

itk_option define -option resourceName resourceClass init
?configBody?

Defines a new configuration option for a mega-widget class.

itk_initialize ?-option value -option value...?

Called when a mega-widget is constructed to initialize the
master option list.

itk_component(symbolicName)

Contains the Tk window path name for each component
named symbolicName.

itk_interior

Contains the name of the toplevel or frame within a mega-
widget which acts as a container for new components.

itk_option(-option)

Contains the current value for any configuration option.

Chapter 2: Building Mega-Widgets with [incr Tk]

117

Auxiliary Commands

The following commands are available outside of a mega-widget class. They
provide useful information about all Tk widgets:

usual tag ?commands?

Used to query or set “usual” option-handling commands for a
widget in class tag.

winfo command window

Returns the access command for any widget, including its
namespace qualifiers.

winfo megawidget window

Returns the name of the mega-widget containing the widget
named window.

Tcl/Tk Tools

118

