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Preface 
This document, JavaTM APIs for BluetoothTM Wireless Technology  (JSR-82), is the definition of the APIs 
for Bluetooth1 wireless technology for JavaTM 2 Platform, Micro Edition (J2METM).  

Revision History 

Table P-1 Revision History 

Version Date Comments 
0.1 12/31/2000 First draft release 
0.2 03/11/2001 Second draft for EG meeting (3/14-3/16) 
0.3 04/18/2001 Suggestions/changes from March meeting 
0.4 05/20/2001 L2CAP, OBEX, Device discovery, Server applications and incorporated comments from 0.3 
0.5 08/29/2001 Comments from EG meeting (6/19-6/20) and several phonecons. OBEX, Service 

registration, L2CAP and Security were redesigned 
0.6 09/30/2001 Comments from EG phonecons and extended EG comments. Object push deleted. Some 

rework to the other chapters 
0.7 10/10/2001 Comments from the EG, updated with UML diagrams. 
0.8 10/11/2001 Community Review 
0.9 11/28/2001 Changes from Community Review. Public review 
0.95 01/18/2002 Changes from Public Review. Proposed final version 
1.0 02/14/2002 Final Release 
1.0a 04/05/2002 Fixed typos. Schemas don’t have underscores. 

 

Who Should Use This Specification 

The intended audience for this document is the Java Community Process (JCP) expert group defining 
these APIs, implementers of these APIs and application developers targeting these APIs. 

How This Specification Is Organized 

The topics in this specification are organized as follows: 
Chapter 1, “Introduction and Background,” provides a context for the Java APIs for Bluetooth 
Wireless Technology Specification and lists the names of the companies that have been involved in the 
specification work. 

                                                           
1 Bluetooth is a trademark owned by Bluetooth SIG, Inc. 
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Chapter 2, “Goals, Requirements and Scope,” defines the goals, special requirements and scope of 
this specification. 
Chapter 3, “Architecture of the Java Bluetooth API,” provides an overview of Bluetooth wireless 
technology and defines the high-level architecture of this specification. 
Part A, “DISCOVERY,” covers chapters 4, 5 and 6.  
Chapter 4, “Device Discovery,” defines the APIs for Bluetooth device discovery. 
Chapter 5, “Service Discovery,” defines the APIs for service search and service record retrieval. 
Chapter 6, “Service Registration,” defines the APIs for registering services. 
Part B, “DEVICE MANAGEMENT,” covers chapters 7 and 8. 
Chapter 7, “Generic Access Profile,” defines the APIs for the Generic Access Profile (GAP) and link 
management. 
Chapter 8, “Security,” defines the APIs to obtain secure communication.  
Part C, “COMMUNICATION,” covers chapters 9,10 and 11. 
Chapter 9, “Serial Port Profile,” defines the APIs for making RFCOMM connections. 
Chapter 10, “Logical Link Control and Adaptation Protocol (L2CAP),” defines the APIs for making 
L2CAP connections. 
Chapter 11, “Object Exchange Protocol (OBEX),” defines the architecture and the APIs for making 
OBEX connections. 
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Chapter 1 Introduction and Background 

1.1  Introduction 

This document, produced as a result of Java Specification Request 82 (JSR-82), defines the optional 
package for Bluetooth wireless technology for Java 2 Platform, Micro Edition (J2ME). The goal of this 
specification is to define the architecture and the associated APIs required to enable an open, third party 
Bluetooth application development environment. 

This API is designed to operate on top of the Connected, Limited Device Configuration (CLDC), which 
is described in Connected, Limited Device Configuration (JSR-30), Sun Microsystems, Inc. This API is 
an optional package that can be used to extend the capability of a J2ME profile, such as the Mobile 
Information Device Profile (JSR 37) [5]. 

Because this API is based on CLDC, the reader is assumed to have some familiarity with the CLDC 
specification and the Generic Connection Framework (GCF) described therein. 
 

1.2 Background 

1.2.1 Bluetooth Specification 

The specification for Bluetooth wireless communications is developed by the Bluetooth Special Interest 
Group (SIG) led by promoter companies 3Com, Ericsson, Intel, IBM, Agere, Microsoft, Motorola, Nokia 
and Toshiba.  The Bluetooth specification is available from the SIG’s web site, 
http://www.bluetooth.com.  The Bluetooth specification defines protocols and application profiles but 
does not define any APIs. 

The JSR-82 specification defines APIs that can be used to exercise certain Bluetooth protocols defined in 
the Bluetooth specification volume 1 [1], and certain profiles defined in the Bluetooth specification 
volume 2 [2]. Those profiles are listed in Section 2.3. This API is defined in such a way as to make it 
possible for additional and future profiles to be built on top of this API. This assumes that future changes 
to the Bluetooth specification remain compatible with this API. This API is based on the Bluetooth 
specification version 1.1. However, nothing in this specification is intended to preclude operating with 
version 1.0 compliant stacks or hardware. In addition, if future versions are backward compatible with 
version 1.1, then implementations of this specification should operate on those versions of stacks or 
hardware as well. 

http://www.bluetooth.com/
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1.2.2 JSR-82 Expert Group 

This specification was produced by the Expert Group formed to define the Java APIs for Bluetooth 
wireless technology. The following companies, listed in alphabetical order, are members of this expert 
group: 
 
•= Extended Systems 
•= IBM  
•= Mitsubishi Electric 
•= Motorola (specification lead) 
•= Newbury Networks 
•= Nokia 
•= Parthus Technologies 
•= Research in Motion  
•= Rococo Software 
•= Sharp Laboratories of America 
•= Sony Ericsson Mobile Communications 
•= Smart Fusion 
•= Smart Network Devices 
•= Sun  Microsystems 
•= Symbian 
•= Telecordia 
•= Vaultus 
•= Zucotto 
 
Three members participated as individual members. They are Peter Dawson, Steven Knudsen and Brad 
Threatt. 
 
 

1.3 Document Conventions 

 
This document uses definitions based upon those specified in RFC 2119 [10]. 
Table 1-1  RFC 2119 Definitions 

Term Definition 
MUST 
SHALL 
REQUIRED 

The associated definition is an absolute requirement of the specification. 

MUST NOT 
SHALL NOT 

The associated definition is an absolute prohibition of the specification. 
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Term Definition 
SHOULD 
RECOMMENDED 

Indicates that there exist valid reasons in particular circumstances to ignore the associated 
definition, but the full implications must be understood and carefully weighed before choosing 
a different course.  The associated definition is a recommended practice. 

SHOULD NOT Indicates that there may exist valid reasons in particular circumstances when the associated 
definition or behavior is acceptable, but the full implications should be understood and the 
case carefully weighed before implementing the definition or behavior.  The associated 
definition or behavior is not recommended. 

MAY 
OPTIONAL 

The associated definition is truly optional. 

 
The term application in this document is intended to represent only those applications written in the Java 
programming language that use these APIs specified by JSR-82 through the Java Community Process. 

1.4 Formatting Conventions 

This specification uses the following formatting conventions: 
Table 1-2 Document Formatting Conventions 

Convention Description 
Courier New Used in code examples 

Times New Roman Used for text  

Arial  Used for tables 
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Chapter 2 Goals, Requirements, and Scope 

2.1 Goals 

The overall goal of this specification is to define a standard set of APIs that will enable an open, third-
party application development environment for Bluetooth wireless technology. The API is targeted 
mainly at devices that are limited in processing power and memory, and are primarily battery-operated. 
These devices may be manufactured in large quantities, meaning that low cost and low power 
consumption will be primary goals of the manufacturers. The API definition takes these factors into 
consideration. 

The Bluetooth specification continues to grow as new profiles are added. The intent of this 
specification’s design is such that new Bluetooth profiles can be built on top of this API using the Java 
programming language, as long as the core layer specification does not change. To promote future 
expansion and flexibility, this specification is not restricted only to APIs that implement Bluetooth 
profiles, although there are APIs for some Bluetooth profiles, as seen in subsequent chapters. Future 
Bluetooth profiles are being built on top of Object Exchange Protocol (OBEX) and Logical Link Control 
and Adaptation Protocol (L2CAP), so APIs for OBEX and L2CAP protocols are provided to enable these 
future profiles to be implemented in the Java programming language. Detailed information on Bluetooth 
profiles and the relationship to the protocols such as OBEX and L2CAP are given in [1] and [2]. 

2.2 Requirements 

The requirements listed in this chapter are additional requirements beyond those found in Connected, 
Limited Device Configuration (JSR-30), Sun Microsystems, Inc [3]. 

2.2.1 Specification Definition Requirements 

The requirements of this specification are: 
1. Require only CLDC libraries.  
2. Scalability – It should be able to run on any Java 2 platform that supplies the Generic Connection 

Framework (GCF), including any current J2ME profile. 
3. OBEX API definition must be independent of Bluetooth protocols. By contrast, applications written 

using the Bluetooth API are expected to run only on platforms that incorporate Bluetooth wireless 
technology.  

4. Applications may use the OBEX API without using the Bluetooth API.  
5. APIs that could allow applications to accidentally interfere with other applications or cause protocol 

violations should be avoided or delegated to a system control or system monitoring mechanism. 
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6. The API should allow applications to be both a client and a server. See Section 2.2.4. 
7. The specification should allow for the possibility of building Bluetooth profiles on top of the L2CAP 

and OBEX APIs. 
 
This specification shall produce two optional packages; hence, two different Technology Compatibility 
Kits (TCKs) will be produced.  

2.2.2 Device Requirements) 

This API is designed to operate on devices characterized as follows:  
•= 512K minimum total memory available for Java 2 platform (ROM/Flash and RAM). Application 

memory requirements are additional.  

•= Bluetooth communication hardware, with necessary Bluetooth stack and radio. See Section 2.2.3 for 
more detailed requirements 

•= Compliant implementation of the J2ME Connected Limited Device Configuration or a superset of 
CLDC APIs, such as the J2ME Connected Device Configuration (CDC) [4]. 

2.2.3 Bluetooth System Requirements 

The requirements of the underlying Bluetooth system upon which this API will be built are:  
•= The underlying system shall be  “Qualified” in accordance with the Bluetooth Qualification Program 

for at least the Generic Access Profile, Service Discovery Application Profile and Serial Port Profile. 

•= The following layers are supported as defined in the Bluetooth specification version 1.1, and the 
implementation of this API has access to them. 

•= Service Discovery Protocol (SDP) 

•= RFCOMM (type 1 device support) 

•= Logical Link Control and Adaptation Protocol (L2CAP) 

•= An entity called the Bluetooth Control Center (BCC) is provided by the system. The BCC is a 
“control panel”-like application that allows a user or an Original Equipment Manufacturer (OEM) to 
define specific values for certain configuration parameters in a stack.  The details of the BCC are 
discussed in Section 3.3.3. 
 

OBEX support can be provided in the underlying Bluetooth system or by the implementation of this API. 

2.2.4 Usage Cases  

Peer-to-Peer Networking: 

Peer-to-peer networking can be defined and interpreted in many ways. For the purpose of this 
specification, a peer-to-peer network is a network between two or more devices where each device can be 
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both a server and a client. The API specified in this document should allow such capability when the 
network is formed using Bluetooth wireless technology. An example of a peer-to-peer network 
application is a game played between two devices connected through Bluetooth communications. 

The devices involved can belong to entirely different device classes (for example, a phone and a PDA), 
using different hardware and operating systems. If these devices are Java-technology-enabled then the 
software games can be written once in the Java programming language and run on all of these devices. In 
addition, the device independence of these Bluetooth applications makes it possible to share and 
download them to different devices. 

Kiosk: 

It is impractical for a kiosk that sells software to store different executables for the various Bluetooth 
devices that will be manufactured. With this API, an application or a Bluetooth game can be written 
once, and purchased and executed on all Bluetooth devices that have implemented this API. This 
capability enables establishments such as airports, train stations and malls to have custom applications 
that work best in their environment. Bluetooth devices that have this API implemented can download 
these custom applications from kiosks.  

Buying Soda and Bluetooth Applications Through Vending Machines:  

Another example where this API can provide benefit is a scenario where people purchase or download 
Bluetooth applications to their Bluetooth device while using the same device to purchase a soda from a 
vending machine. This API allows applications to be written once and run on many different Bluetooth 
platforms. The vending machine stores these applications and transfers them via Bluetooth transports. A 
game manufacturer might buy advertising space on vending machines to house their sample game. 
Customers purchasing soda could be given the option to download a free sample game, which can be 
upgraded later by purchasing the game.  

This API will help to create more applications, which can foster the success of Bluetooth wireless 
technology. 

2.3 Scope 

The Bluetooth specification covers many layers and profiles and it is not possible to include all of them 
in this API. Rather than try to address all of them, this specification prioritizes API function based on 
size requirements and the breadth of usage of the API. This specification addresses the following areas: 
1. Data transmissions only (Bluetooth wireless technology supports both data and voice transmissions) 
2. The following protocols: 

•= L2CAP (connection-oriented only) 
•= RFCOMM 
•= SDP 
•= OBject Exchange protocol (OBEX) 

3. The following profiles: 
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•= Generic Access Profile (GAP) 
•= Service Discovery Application Profile (SDAP) 
•= Serial Port Profile (SPP) 
•= Generic Object Exchange Profile (GOEP) 

The specification does not address nor provide APIs for the following: 
1. Audio (voice) transmissions 
2. Telephony Control Protocol – Binary (TCS Binary or TCS-BIN) 

The API is intended to provide the following capabilities: 
1. Register services 
2. Discover devices and services 
3. Establish RFCOMM, L2CAP and OBEX connections 
4. Conduct these activities in a secure fashion 
 
The following are outside the scope of this specification, but the specification does not prevent the 
implementation of these capabilities: 
1. Layer management: Many aspects of device management are system-specific and are difficult to 

standardize, such as power modes, park mode and so on. 
2. Downloading and storing applications: These features are implementation-specific and therefore 

are not defined in this specification. Over-the-air provisioning is being addressed in other JSRs (JSR-
37 and JSR-118). 

3. Asynchronous start of applications: Methods by which an application can be started 
asynchronously because of external requests are not addressed. For example, a service does not have 
to be running after it has registered itself, but could be started when a client connects to that service. 
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Chapter 3 Architecture 
 

3.1 Overview 

This chapter addresses issues that both implementers and developers will encounter when implementing 
and using the Java APIs for Bluetooth Wireless Technology. 

3.2 Overview of Bluetooth Protocol Stack 

This section provides a brief overview of the Bluetooth protocol stack. For more details on the protocol 
stack and other parts of Bluetooth wireless technology, refer to the Bluetooth specifications available 
from the Bluetooth SIG’s web site, http://www.bluetooth.com. The Bluetooth protocol stack can be 
broadly divided into two components: the Bluetooth host and the Bluetooth controller (or Bluetooth radio 
module). The Host Controller Interface (HCI) provides a standardized interface between the Bluetooth 
host and the Bluetooth controller (radio module).   

Figure 3-1 shows the block diagram of the Bluetooth protocol stack. The protocol stack is composed of 
protocols that are specific to Bluetooth wireless technology, such as L2CAP and SDP, and other adopted 
protocols such as OBEX. The Bluetooth protocol stack can be divided into four layers according to their 
purpose as shown in Table 3-1. 
Table 3-1 Protocols and Layers in the Bluetooth Protocol Stack 

Protocol Groups Protocols in the Stack 
Bluetooth Core Protocols Baseband, Link Manager Protocol, L2CAP and SDP 

Cable Replacement Protocol RFCOMM 

Telephony Control Protocol TCS Binary 

Adopted Protocols PPP, UDP/TCP/IP, OBEX, WAP 

 
The baseband layer enables the physical RF link between Bluetooth units making a connection. Link 
Manager Protocol (LMP) is responsible for link set-up between Bluetooth devices and managing security 
aspects such as authentication and encryption. L2CAP adapts upper-layer protocols to the baseband. It 
multiplexes between the various logical connections made by the upper layers. Audio data typically is 
routed directly to and from the baseband and does not go through L2CAP. SDP is used to query device 
information, services and characteristics of services. RFCOMM emulates RS-232 control and data 
signals over the Bluetooth baseband, providing transport capabilities for upper level services that use a 
serial interface as a transport mechanism. TCS Binary defines the call control signaling for the 
establishment of voice and data calls between Bluetooth devices. 

http://www.bluetooth.com/
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Figure 3-1 Bluetooth Protocol Stack 

In addition to the protocols, the Bluetooth SIG has defined Bluetooth Profiles. A Bluetooth Profile 
defines standard ways to use selected protocols and protocol features that enable a particular usage 
model. A Bluetooth device may support one or more profiles. The four “generic” profiles are the Generic 
Access Profile (GAP), the Serial Port Profile (SPP), the Service Discovery Application profile (SDAP), 
and the Generic Object Exchange Profile (GOEP). These profiles are addressed by this specification. 
Figure 3-2 shows the relationships among the various Bluetooth profiles. As an example, the File 
Transfer Profile is built on top of GOEP, which depends on the SPP, which is built upon GAP. 
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Figure 3-2 Bluetooth Version 1.1 Profiles from [2] 

3.3 Architecture of the API 

Section 2.3 defined the scope of this specification. Based on that scope, the functionality addressed by 
this specification can be classified into three major categories: 
1. Discovery 
2. Communication 
3. Device Management 
 

 
Figure 3-3 Functionality Provided by this Specification 
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Discovery includes device discovery, service discovery and service registration. Communication includes 
establishing connections between devices and using those connections for Bluetooth communication 
between applications. Device management allows for managing and controlling these connections. This 
specification is organized into these three functional categories. APIs for these functional categories are 
defined in this specification. 

3.3.1 Packages 

The following two packages are defined: 
1. javax.bluetooth 
2. javax.obex 

As stated in the previous chapter, the OBEX API is defined independently of the Bluetooth transport 
layer and is packaged separately. Each of the above packages represents separate optional packages, 
implying that a CLDC implementation can include either of the two packages or both of them. The first 
package is the core Bluetooth API and the second package contains the APIs for OBEX. There will be 
two Technology Compatibility Kits (TCKs), one to test the Bluetooth API and another to test the OBEX 
API.  The TCK is the suite of tests, tools and documentation that allows implementers of this 
specification to determine if their implementation is compliant with this specification.  

Figure 3-4 shows the package structure. The javax.obex and javax.bluetooth packages depend on the 
javax.microedition.io package.  
 

javax.obex

javax.microedition.io

javax.bluetooth

 
Figure 3-4 Package Structure 

3.3.2 MIDP and Bluetooth API 

Mobile Information Device Profile (MIDP) [5] devices are expected to be the first class of devices to 
incorporate this specification, and the specification allows for the coexistence of MIDP and Bluetooth 
APIs. Figure 3-5 gives an example of where the APIs defined in this specification fit in a CLDC+MIDP 
architecture. The Bluetooth API and the MIDP APIs can coexist in a “MIDP+Bluetooth” device but do 
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not depend on each other’s APIs. In a “CLDC+Bluetooth” device, the MIDP portions of this diagram will 
not exist. 
 
 

Operating

CLDC/KVM

MIDP | Bluetooth -
API

MIDP-
Bluetooth
Applications

OEM specific
Applications

OEM-specific
Classes

Native
Applications

Operating System + Bluetooth Stack

 
Figure 3-5 CLDC+MIDP+Bluetooth Architecture Diagram 

3.3.3 Bluetooth Control Center 

Bluetooth devices, especially those implementing this API, may allow multiple applications to execute 
simultaneously. The need for a Bluetooth Control Center (BCC) arises from the desire to prevent one 
application from adversely affecting another application. The BCC is a set of capabilities that allow a 
user or an OEM to define specific values for certain configuration parameters in a Bluetooth stack and to 
resolve conflicting requests made by applications to the implementation of the Java APIs for Bluetooth 
wireless technology. The BCC is the central authority for local Bluetooth device settings. The details of 
the BCC are left to the implementation.  It may be a native application, an application with a separate 
API or simply a group of settings that are specified by the manufacturer and cannot be changed by the 
user.   

3.3.3.1  BCC and Security Mode 

At the most basic level, the BCC defines device-wide security settings.  For example, the BCC controls 
the security mode that a stack uses and maintains the list of trusted devices.  This API allows an 
application to specify its security requirements in terms of authentication, authorization and encryption. 
The JSR-82 implementation interfaces with the BCC to arbitrate these security requirements across all 
applications.  The BCC is not a class or an interface specified in the API, but is an important part of the 
security architecture for this specification. The Java APIs for Bluetooth wireless technology require the 
existence of a BCC. The precise nature of the BCC is implementation dependent. It may or may not be 
written in the Java programming language. 
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3.3.3.2  BCC Features 

The BCC must provide the API implementation with these functions: 
•= The base security settings of the device, including the security modes defined in the Bluetooth 

specification. 

•= A list of remote Bluetooth devices (not necessarily in the vicinity) that are already known to the local 
Bluetooth device. 

•= A list of remote Bluetooth devices (not necessarily in the vicinity) that are trusted by the local 
Bluetooth device. 

•= A mechanism to pair two devices trying to connect for the first time. 

•= A mechanism to provide for authorization of connection requests. 

None of this information may be changed by an application other than the BCC.  

 
The BCC may provide, but is not limited to, the following capabilities: 
•= Setting the Bluetooth device name (the user-friendly name) of the local device. 

•= Setting timeouts used by the baseband layer. 

•= Determining how connectable and discoverable modes are set. 

•= Resetting the local device. 

•= Enumerating services on the local device. 

3.3.4 Device Properties 

Various Java technology-compliant Bluetooth products need to be configured differently depending on 
the product and market. Thus there is a need for a set of device properties. This API defines the 
additional system properties that may be retrieved by a call to LocalDevice.getProperty(), as 
shown in Table 3-2. These properties either provide additional information about the Bluetooth system or 
define restrictions that are placed on an application by an implementation. The values of these properties 
are implementation dependent and are of type String. The strings are case sensitive. If a property is not 
defined or is not known, the value returned is null. 
 

Table 3-2 Device Properties 

Device Property Description 
bluetooth.api.version The version of the Java APIs for Bluetooth wireless technology that is supported. For 

this version it will be set to “1.0”. 
bluetooth.l2cap.receiveMTU.max The maximum ReceiveMTU  size in bytes supported in L2CAP. The string will be in 

Base 10 digits, e.g., “672”. 

bluetooth.connected.devices.max The maximum number of connected devices supported (will include parked devices). 

The string will be in Base10 digits. 



ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)   
   
 

 April 5, 2002  Java APIs for Bluetooth Wireless Technology (JSR-82)   
 

14

Device Property Description 
bluetooth.connected.inquiry Is inquiry allowed during a connection? Valid values are either "true" or "false". 

bluetooth.connected.page Is paging allowed during a connection? Valid values are either "true" or "false". 

bluetooth.connected.inquiry.scan Is inquiry scanning allowed during connection? Valid values are either  “true” or “false”. 

bluetooth.connected.page.scan Is page scanning allowed during connection? Valid values are either “true” or “false”. 

bluetooth.master.switch Is master/slave switch allowed? Valid values are either “true” or “false”. 

bluetooth.sd.trans.max Maximum number of concurrent service discovery transactions. The string will be in 

Base10 digits. 

bluetooth.sd.attr.retrievable.max Maximum number of service attributes to be retrieved per service record. The string 

will be in Base10 digits. 
 

3.3.5 Client and Server Model 

A Bluetooth service is an application acting as a server that provides some kind of assistance to client 
devices via Bluetooth communications.  This assistance typically takes the form of a capability or 
function that is unavailable locally on the client device. A printing service is one example of a Bluetooth 
server application.  Other examples of Bluetooth server applications can be found in the Bluetooth 
profiles: LAN access servers, file and object servers, synchronization services and so on.  Developers can 
define their own Bluetooth server applications beyond those specified in the Bluetooth profiles and make 
these services available to remote clients.  They do this by defining a service record that describes the 
service and adding that service record to the service discovery database (SDDB) of the local device. 

After registering a service record in the SDDB, the server application waits for a client application to 
initiate contact with the server to access the service.  The client application and the server application 
then establish a Bluetooth connection to conduct their business.   

The remaining chapters of this specification use the Bluetooth specification as a guide for defining the 
capabilities that should be offered in this optional package.  This is more difficult in the case of 
Bluetooth server applications, because the Bluetooth specifications do not specify: 
•= how or when server applications register service records in the SDDB; 

•= what internal format or database mechanism is used by the SDDB; 

•= how the SDDB assigns unique service record handles to service records; or 

•= how server applications interact with the Bluetooth stack to form connections with remote clients. 

These aspects of server applications are outside of the scope of the Bluetooth specification, are likely to 
vary from one Bluetooth stack implementation to another and do not require standardization to ensure 
interoperability of Bluetooth devices from different manufacturers. However, a standardized API will 
allow server applications to take full advantage of Bluetooth communications.  

This specification defines the following division of responsibilities among the server application, the 
client application, and the Bluetooth stack. 

Typical responsibilities of a Bluetooth server application are to: 
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•= Create a service record describing the service offered by the application. 

•= Add a service record to the server’s SDDB to make potential clients aware of this service. 

•= Register the Bluetooth security measures associated with this service that should be enforced for 
connections with clients. 

•= Accept connections from clients that request the service offered by the application. 

•= Update the service record in the server’s SDDB if characteristics of the service change. 

•= Remove or disable the service record in the server’s SDDB when the service is no longer available. 

Typical responsibilities of a Bluetooth client application are to: 
•= Use SDP to query a remote SDDB for desired services. 

•= Register the Bluetooth security measures associated with this service that should be enforced for 
connections with servers. 

•= Initiate connections to servers offering desired services. 

•= Optionally, poll the SDDB to determine if the service has changed or has become unavailable. 

The Bluetooth stack is assumed to provide the following capabilities for local Bluetooth server 
applications: 
•= A repository for service records that allows servers to add, update and remove their own service 

records. 

•= Assigning unique service record handles. 

•= Establishing logical connections to client applications. 

The Bluetooth stack is assumed to provide the following capabilities for remote service discovery clients: 
•= Search and retrieval of service records stored in the server’s SDDB (that is, acting as an SDP server). 

•= Establishing logical connections to server applications. 

Chapter 5 describes the APIs that allow client applications to query a remote SDDB for desired services.  
Chapter 6 describes the APIs that support most of the responsibilities of a Bluetooth server application.  
The security responsibilities of server and client applications are discussed in Chapter 8. Details of server 
applications and the requirements for implementations of the server APIs are discussed in Chapters 9, 10 
and 11. 
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PART A – DISCOVERY 
Because wireless devices are mobile, they need a way to find devices to connect to and a way to learn 
what those devices can do. This API provides a way to discover devices, find services and advertise 
services to other devices.  Chapter 4 describes the API for device discovery. Chapter 5 discusses finding 
services on these devices and extracting the details needed to use these services. For services to be 
discovered, they have to be registered, and Chapter 6 describes the API for service registration. 
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Chapter 4 Device Discovery 

4.1 Introduction 

This chapter provides an overview of the device discovery capabilities of the Java APIs for Bluetooth 
wireless technology.  An application may obtain a list of devices using either startInquiry() (non-
blocking) or retrieveDevices() (blocking). startInquiry() requires the application to specify a 
listener; this listener is notified when new devices are found from a real inquiry. If an application does 
not wish to wait for an inquiry to begin, the API provides the retrieveDevices() method that returns 
the list of devices that were already found via a previous inquiry or devices that are classified as pre-
known. Pre-known devices are those devices that are defined in the Bluetooth Control Center as devices 
the local device frequently contacts. This method does not perform an inquiry, but provides a quick way 
to get a list of devices that may be in the area. Once a device is discovered, a service search is usually 
initiated (see Chapter 5 for details). 

4.2 Device Discovery Classes 

This section provides a brief overview of the classes that are used in device discovery. The specification 
of the classes and methods are found in Appendix 1. Example code using these classes is in the next 
chapter. 

4.2.1 interface javax.bluetooth.DiscoveryListener 

This interface allows an application to specify an event listener that will respond to inquiry-related 
events.  This interface is also used for service searching.  The method deviceDiscovered() is called 
each time a device is found during an inquiry.  When the inquiry is completed or canceled, the 
inquiryCompleted() method will be called.  This method receives as an argument either the 
INQUIRY_COMPLETED, INQUIRY_ERROR or INQUIRY_TERMINATED constant to differentiate between 
completed, error or canceled inquiries. 

4.2.2 class javax.bluetooth.DiscoveryAgent 

This class provides methods for service and device discovery.  For device discovery, this class provides 
the startInquiry () method to place the local device in inquiry mode and the retrieveDevices() 
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method to return information about devices that were found via previous inquiries performed by the local 
device. It also provides a way to cancel an inquiry via the cancelInquiry() method. 
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Chapter 5 Service Discovery  
 

5.1 Introduction 

This chapter describes the client API used to discover services that are available on a service discovery 
server. Class DiscoveryAgent provides the methods to search for services on a Bluetooth server device 
and to initiate device and service discovery transactions.  This API does not support searching for 
services on the local device. 

5.2 API Overview 

The process by which a client can discover services is described in the SDAP (Part K:2 of [2]), including 
all of the SDP (Part E of [1]) capabilities. SDP and the GAP (Part K:1 of [2]) together provide the SDAP 
functionality. This specification supports the following SDAP functionality: 
•= searching for services of a particular class; 

•= retrieving service attributes of a service;  

•= simultaneously searching for services and retrieving their attributes; and 

•= terminating a service search transaction in progress. 

To discover services available on service discovery servers, the client application first should retrieve an 
object that encapsulates the SDAP functionality. This object of type DiscoveryAgent is a global 
singleton object. Pseudocode to retrieve the DiscoveryAgent is given next: 
DiscoveryAgent da = LocalDevice.getLocalDevice().getDiscoveryAgent(); 

5.3 Service Discovery Classes 

The following sections provide a brief overview of the classes involved in service discovery. The 
specification of the classes and methods are found in Appendix 1. 
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5.3.1 class javax.bluetooth.UUID 

The class UUID encapsulates unsigned integers that are 16 bits, 32 bits or 128 bits long. The class is used 
to represent a universally unique identifier used widely as the value for a service attribute. Only service 
attributes represented by UUIDs are searchable in Bluetooth SDP. The Bluetooth specification defines a 
few “short” (16-bit or 32-bit) UUIDs and describes how a 16-bit or 32-bit UUID is converted to a 128-bit 
UUID. This promotion is required for matching; normally only 128-bit UUIDs are compared. 

5.3.2 class javax.bluetooth.DataElement 

This class contains the various data types that a Bluetooth service attribute value can take on. 
Valid service attribute data types include:  
•= signed and unsigned integers that are one, two, four, eight or sixteen bytes long,  

•= String,  

•= boolean,  

•= UUID, and 

•= sequences of any one of these scalar types.  
The class also presents an interface to construct and retrieve the value of a service attribute. 

5.3.3 interface javax.bluetooth.ServiceRecord 

This interface defines the Bluetooth Service Record, which contains attribute ID, value pairs. A 
Bluetooth attribute ID is a 16-bit unsigned integer and an attribute value is a DataElement. A 
DataElement is a self-describing value of one of the types listed in Section 5.3.2. In addition to 
providing the remote Bluetooth server device from which a ServiceRecord was obtained, this interface 
has a method populateRecord() to retrieve desired service attributes. 

5.3.4 class javax.bluetooth.DiscoveryAgent 

The class DiscoveryAgent provides methods for service and device discovery. It supports service 
discovery in non-blocking mode and provides a way to cancel a service search transaction in progress.  

5.3.5  interface javax.bluetooth.DiscoveryListener 

This interface allows an application to specify an event listener that responds to device and service 
discovery events. The method servicesDiscovered() is called whenever services are discovered. 
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When a service search transaction is completed or canceled, the serviceSearchCompleted() method 
is called. 

5.4 Example Code 

Sample code for device and service discovery follows:
import java.lang.*;

import java.io.*;

import java.util.*;

import javax.microedition.io.*;

import javax.bluetooth.*;

/**

* This class shows a simple client application that performs device

* and service

* discovery and communicates with a print server to show how the Java

* API for Bluetooth wireless technology works.

*/

public class PrintClient implements DiscoveryListener {

/**

* The DiscoveryAgent for the local Bluetooth device.

*/

private DiscoveryAgent agent;

/**

* The max number of service searches that can occur at any one time.

*/

private int maxServiceSearches = 0;

/**

* The number of service searches that are presently in progress.

*/

private int serviceSearchCount;

/**

* Keeps track of the transaction IDs returned from searchServices.

*/

private int transactionID[];

/**

* The service record to a printer service that can print the message
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* provided at the command line.

*/

private ServiceRecord record;

/**

* Keeps track of the devices found during an inquiry.

*/

private Vector deviceList;

/**

* Creates a PrintClient object and prepares the object for device

* discovery and service searching.

*

* @exception BluetoothStateException if the Bluetooth system could not be

* initialized

*/

public PrintClient() throws BluetoothStateException {

/*

* Retrieve the local Bluetooth device object.

*/

LocalDevice local = LocalDevice.getLocalDevice();

/*

* Retrieve the DiscoveryAgent object that allows us to perform device

* and service discovery.

*/

agent = local.getDiscoveryAgent();

/*

* Retrieve the max number of concurrent service searches that can

* exist at any one time.

*/

try {

maxServiceSearches = Integer.parseInt(

LocalDevice.getProperty("bluetooth.sd.trans.max"));

} catch (NumberFormatException e) {

System.out.println("General Application Error");

System.out.println("\tNumberFormatException: " + e.getMessage());

}

transactionID = new int[maxServiceSearches];

// Initialize the transaction list

for (int i = 0; i < maxServiceSearches; i++) {
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transactionID[i] = -1;

}

record = null;

deviceList = new Vector();

}

/**

* Adds the transaction table with the transaction ID provided.

*

* @param trans the transaction ID to add to the table

*/

private void addToTransactionTable(int trans) {

for (int i = 0; i < transactionID.length; i++) {

if (transactionID[i] == -1) {

transactionID[i] = trans;

return;

}

}

}

/**

* Removes the transaction from the transaction ID table.

*

* @param trans the transaction ID to delete from the table

*/

private void removeFromTransactionTable(int trans) {

for (int i = 0; i < transactionID.length; i++) {

if (transactionID[i] == trans) {

transactionID[i] = -1;

return;

}

}

}

/**

* Completes a service search on each remote device in the list until all

* devices are searched or until a printer is found that this application

* can print to.

*

* @param devList the list of remote Bluetooth devices to search

*

* @return true if a printer service is found; otherwise false if

* no printer service was found on the devList provided

*/
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private boolean searchServices(RemoteDevice[] devList) {

UUID[] searchList = new UUID[2];

/*

* Add the UUID for L2CAP to make sure that the service record

* found will support L2CAP. This value is defined in the

* Bluetooth Assigned Numbers document.

*/

searchList[0] = new UUID(0x0100);

/*

* Add the UUID for the printer service that we are going to use to

* the list of UUIDs to search for. (a fictional printer service UUID)

*/

searchList[1] = new UUID("1020304050d0708093a1b121d1e1f100", false);

/*

* Start a search on as many devices as the system can support.

*/

for (int i = 0; i < devList.length; i++) {

/*

* If we found a service record for the printer service, then

* we can end the search.

*/

if (record != null) {

return true;

}

try {

int trans = agent.searchServices(null, searchList, devList[i],

this);

addToTransactionTable(trans);

} catch (BluetoothStateException e) {

/*

* Failed to start the search on this device, try another

* device.

*/

}

/*

* Determine if another search can be started. If not, wait for

* a service search to end.

*/

synchronized (this) {
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serviceSearchCount++;

if (serviceSearchCount == maxServiceSearches) {

try {

this.wait();

} catch (Exception e) {

}

}

}

}

/*

* Wait until all the service searches have completed.

*/

while (serviceSearchCount > 0) {

synchronized (this) {

try {

this.wait();

} catch (Exception e) {

}

}

}

if (record != null) {

return true;

} else {

return false;

}

}

/**

* Finds the first printer that is available to print to.

*

* @return the service record of the printer that was found; null if no

* printer service was found

*/

public ServiceRecord findPrinter() {

/*

* If there are any devices that have been found by a recent inquiry,

* we don't need to spend the time to complete an inquiry.

*/

RemoteDevice[] devList = agent.retrieveDevices(DiscoveryAgent.CACHED);

if (devList != null) {

if (searchServices(devList)) {

return record;
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}

}

/*

* Did not find any printer services from the list of cached devices.

* Will try to find a printer service in the list of pre-known

* devices.

*/

devList = agent.retrieveDevices(DiscoveryAgent.PREKNOWN);

if (devList != null) {

if (searchServices(devList)) {

return record;

}

}

/*

* Did not find a printer service in the list of pre-known or cached

* devices. So start an inquiry to find all devices that could be a

* printer and do a search on those devices.

*/

/* Start an inquiry to find a printer */

try {

agent.startInquiry(DiscoveryAgent.GIAC, this);

/*

* Wait until all the devices are found before trying to start the

* service search.

*/

synchronized (this) {

try {

this.wait();

} catch (Exception e) {

}

}

} catch (BluetoothStateException e) {

System.out.println("Unable to find devices to search");

}

if (deviceList.size() > 0) {

devList = new RemoteDevice[deviceList.size()];

deviceList.copyInto(devList);

if (searchServices(devList)) {

return record;
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}

}

return null;

}

/**

* This is the main method of this application. It will print out

* the message provided to the first printer that it finds.

*

* @param args[0] the message to send to the printer

*/

public static void main(String[] args) {

PrintClient client = null;

/*

* Validate the proper number of arguments exist when starting this

* application.

*/

if ((args == null) || (args.length != 1)) {

System.out.println("usage: java PrintClient message");

return;

}

/*

* Create a new PrintClient object.

*/

try {

client = new PrintClient();

} catch (BluetoothStateException e) {

System.out.println("Failed to start Bluetooth System");

System.out.println("\tBluetoothStateException: " +

e.getMessage());

}

/*

* Find a printer in the local area

*/

ServiceRecord printerService = client.findPrinter();

if (printerService != null) {

/*

* Determine if this service will communicate over RFCOMM or

* L2CAP by retrieving the connection string.
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*/

String conURL = printerService.getConnectionURL(

ServiceRecord.NOAUTHENTICATE_NOENCRYPT, false);

int index= conURL.indexOf(':');

String protocol= conURL.substring(0, index);

if (protocol.equals("btspp")) {

/*

* Since this printer service uses RFCOMM, create an RFCOMM

* connection and send the data over RFCOMM.

*/

/* code to call RFCOMM client goes here */

} else if (protocol.equals("btl2cap")) {

/*

* Since this service uses L2CAP, create an L2CAP

* connection to the service and send the data to the

* service over L2CAP.

*/

/* code to call L2CAP client goes here */

} else {

System.out.println("Unsupported Protocol");

}

} else {

System.out.println("No Printer was found");

}

}

/**

* Called when a device was found during an inquiry. An inquiry

* searches for devices that are discoverable. The same device may

* be returned multiple times.

*

* @see DiscoveryAgent#startInquiry

*

* @param btDevice the device that was found during the inquiry

*

* @param cod the service classes, major device class, and minor

* device class of the remote device being returned

*
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*/

public void deviceDiscovered(RemoteDevice btDevice, DeviceClass cod) {

/*

* Since service search takes time and we are already forced to

* complete an inquiry, we will not do a service

* search on any device that is not an Imaging device.

* The device class of 0x600 is Imaging as

* defined in the Bluetooth Assigned Numbers document.

*/

if (cod.getMajorDeviceClass() == 0x600) {

/*

* Imaging devices could be a display, camera, scanner, or

* printer. If the imaging device is a printer,

* then bit 7 should be set from its minor device

* class according to the Bluetooth Assigned

* Numbers document.

*/

if ((cod.getMinorDeviceClass() & 0x80) != 0) {

/*

* Now we know that it is a printer. Now we will verify that

* it has a rendering service on it. A rendering service may

* allow us to print. We will have to do a service search to

* get more information if a rendering service exists. If this

* device has a rendering service then bit 18 will be set in

* the major service classes.

*/

if ((cod.getServiceClasses() & 0x40000) != 0) {

deviceList.addElement(btDevice);

}

}

}

}

/**

* The following method is called when a service search is completed or

* was terminated because of an error. Legal status values

* include:

* <code>SERVICE_SEARCH_COMPLETED</code>,

* <code>SERVICE_SEARCH_TERMINATED</code>,

* <code>SERVICE_SEARCH_ERROR</code>,

* <code>SERVICE_SEARCH_DEVICE_NOT_REACHABLE</code>, and

* <code>SERVICE_SEARCH_NO_RECORDS</code>.

*

* @param transID the transaction ID identifying the request which
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* initiated the service search

*

* @param respCode the response code which indicates the

* status of the transaction; guaranteed to be one of the

* aforementioned only

*

*/

public void serviceSearchCompleted(int transID, int respCode) {

/*

* Removes the transaction ID from the transaction table.

*/

removeFromTransactionTable(transID);

serviceSearchCount--;

synchronized (this) {

this.notifyAll();

}

}

/**

* Called when service(s) are found during a service search.

* This method provides the array of services that have been found.

*

* @param transID the transaction ID of the service search that is

* posting the result

*

* @param service a list of services found during the search request

*

* @see DiscoveryAgent#searchServices

*/

public void servicesDiscovered(int transID, ServiceRecord[] servRecord) {

/*

* If this is the first record found, then store this record

* and cancel the remaining searches.

*/

if (record == null) {

record = servRecord[0];

/*

* Cancel all the service searches that are presently

* being performed.

*/
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for (int i = 0; i < transactionID.length; i++) {

if (transactionID[i] != -1) {

agent.cancelServiceSearch(transactionID[i]);

}

}

}

}

/**

* Called when a device discovery transaction is

* completed. The <code>discType</code> will be

* <code>INQUIRY_COMPLETED</code> if the device discovery

* transactions ended normally,

* <code>INQUIRY_ERROR</code> if the device

* discovery transaction failed to complete normally,

* <code>INQUIRY_TERMINATED</code> if the device

* discovery transaction was canceled by calling

* <code>DiscoveryAgent.cancelInquiry()</code>.

*

* @param discType the type of request that was completed; one of

* <code>INQUIRY_COMPLETED</code>, <code>INQUIRY_ERROR</code>

* or <code>INQUIRY_TERMINATED</code>

*/

public void inquiryCompleted(int discType) {

synchronized (this) {

try {

this.notifyAll();

} catch (Exception e) {

}

}

}

}
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Chapter 6 Service Registration  
 

6.1 Introduction 

Chapter 3 listed the typical responsibilities of a Bluetooth server application: 

1. Create a service record that describes the service offered by the application. 
2. Add a service record to the server’s SDDB to make potential clients aware of this service. 
3. Register the Bluetooth security measures associated with a service that should be enforced for 

connections with clients. 
4. Accept connections from clients that request the service offered by the application. 
5. Update the service record in the server’s SDDB if characteristics of the service change. 
6. Remove or disable the service record in the server’s SDDB when the service is no longer available. 

Responsibilities 1, 2, 5, and 6 comprise a subset of the server responsibilities having to do with 
advertising a service to client devices. We call this subset service registration. 
This chapter provides an overview of the support that this API provides for service registration.  
Additional details about service registration and the other server responsibilities, including sample 
service registration code, can be found in Chapters 9-11.  

6.2  Responsibilities for Service Registration 

The previous section described service registration from a generic Bluetooth perspective.  In the context 
of the Java APIs for Bluetooth wireless technology, meeting the service registration responsibilities is a 
collaborative effort between the server application, the API implementation and the Bluetooth stack. 
Figure 6-1 describes how these components collaborate.  

Figure 6-1 shows that when the server application calls Connector.open()with a URL connection 
string argument for a server, then the implementation creates a new ServiceRecord.  A corresponding 
service record is added to the SDDB by the implementation when the server application calls 
acceptAndOpen(). The server application can access its ServiceRecord by calling getRecord(), 
and then make modifications to that ServiceRecord.  These modifications also are made to the 
corresponding service record in the SDDB when the server application calls updateRecord().  Finally, 
the application’s service record is removed from the SDDB when the server application sends a close
message to the notifier for the service. 
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6.3 Connect-Anytime Services 

The assumption in Figure 6-1 is that the server application already must be running and ready to accept 
connections before a client attempts to make a connection to the server.  Server applications that have 
this requirement are called run-before-connect services.  Some devices may provide a capability to start 
selected server applications on demand when a client application attempts to connect to a server 
application that is not currently running.  Server applications with this capability are called connect-
anytime services. 
 
In the case of connect-anytime services, the service record should remain in the SDDB after the server 
application exits, because a client still can connect to this service.  Ideally, a service record should be 
discoverable by clients if, and only if, it is possible for clients to connect to this service.  Although it is 
difficult to achieve this objective in all cases, it provides a useful guideline to establish policies for 
adding and removing service records from the SDDB. 
 
In the case of run-before-connect services, clients have no possibility of connecting until the server calls 
acceptAndOpen(). For this reason, the implementation must not add a service record to the SDDB until 
acceptAndOpen() is called.  Once the notifier is closed, it is no longer possible to call 
acceptAndOpen() to accept another client connection, so the implementation must remove the service 
record from the SDDB or disable it. 
 
In the case of connect-anytime services, the implementation should add the service record to the SDDB at 
the point when the device and the server application first reach a state where clients can connect.  By the 
time a connect-anytime server application is running and has called acceptAndOpen() it must be in this 
state and have its service record in the SDDB. However, the service record may be added to the SDDB 
earlier if clients can connect prior to this point.  In some cases, clients may be able to connect as soon as 
a server application is installed on a device.  In these cases, a service record may be added to the SDDB 
at the time of application installation. 
 
The service record should be removed from the SDDB or disabled when client applications no longer can 
connect to the service.  For example, the service record for a connect-anytime service must be removed 
or disabled by the time of application de-installation because clients no longer can connect to this service 
on this device. 
 
An implementation of this API need not support both run-before-connect services and connect-anytime 
services.  Support for one of these two service types is sufficient. 
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Figure 6-1 Server Application and Implementation Collaboration for Service Registration 

6.4 Connectable and Non-Connectable Modes 

The GAP specification [2] describes one of the modes of operation that characterize Bluetooth devices: 
•= Connectable Mode: a device in this mode periodically listens for attempts by a remote device to 

initiate a connection. 
•= Non-Connectable Mode: a device in this mode does not listen for attempts by a remote device to 

initiate a connection. 
 
The following client functions will be successful only if the server device is in the connectable mode:  
•= Use SDP to query a remote SDDB for desired services. 
•= Initiate connections to servers offering desired services. 
•= Optionally, poll the remote SDDB to determine if the service has changed or has become 

unavailable.  
The proper functioning of a server application requires that the server device be connectable.  For this 
reason, the implementation of this API should attempt to make the local device connectable when the 
implementation is aware of the existence of service records in the SDDB of the local device.  As part of 
the implementation of acceptAndOpen(), an attempt must be made to ensure that the local device is 
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connectable.  In the case of connect-anytime services, other occasions beside acceptAndOpen() could 
cause the implementation to check for the existence of service records and request that the server device 
enter connectable mode; these cases are implementation dependent. 
 
Because device users might have their own reasons to make the local device connectable or non-
connectable, the implementation is not the final authority on whether or not the device will enter 
connectable mode.  The implementation makes a request to the BCC to make the local device 
connectable, but this request might not be satisfied if the device user has chosen to make the local device 
non-connectable. A BluetoothStateException is thrown if the server device attempts to make itself 
connectable, but this request conflicts with the device settings established by the user. 
 
When all of the service records in the SDDB have been removed or disabled, the implementation 
optionally may request that the server device be made non-connectable. 
 
Although a device in non-connectable mode does not respond to connection attempts by remote devices, 
it could initiate connection attempts of its own.  That is, a non-connectable device can be a client, but not 
a server.  For this reason, the implementation need not request connectable mode for a device without 
any service records in its SDDB.  

6.5 Classes 

The following sections provide a brief overview of the classes involved in service registration. The 
specification of the classes and methods are found in Appendix 1.  

6.5.1 interface javax.bluetooth.ServiceRecord 

A service record describes a Bluetooth service to clients.  Service records are composed of a set of 
service attributes, where each attribute is a pair consisting of an attribute ID and an attribute value. 
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Figure 6-2 A Server Provides a Service Record That Enables Clients to Connect 

An SDP server provided by a Bluetooth stack maintains a “database”2 of service records that describe the 
services on the server device.  A run-before-connect service adds its ServiceRecord to the SDDB by 
calling acceptAndOpen().  Service discovery clients use SDP to query the SDP server for any service 
records of interest (see Figure 6-2).  A ServiceRecord provides sufficient information to allow an 
SDP client to connect to the Bluetooth service on the server device. 

The server application also can use the setDeviceServiceClasses() method of ServiceRecord to 
turn on some of the service class bits of the device to reflect the new service being offered.  Additional 
details about the device service class bits are in javax.bluetooth.DeviceClass in Appendix 1. 

6.5.2 class javax.bluetooth.LocalDevice 

The LocalDevice class provides a getRecord() method that a server application can use to obtain 
its ServiceRecord. The server then can modify the ServiceRecord object by adding or modifying 
attributes.  The updated service record then can be placed in the SDDB by performing 
notifier.acceptAndOpen() or using the updateRecord() method of LocalDevice. 

                                                           
2 The term “database” is used informally.  The service record storage mechanism is implementation-dependent and 
can take many forms; it need not be a true relational or other database. 
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6.5.3 class javax.bluetooth.ServiceRegistrationException extends 
java.io.IOException 

A ServiceRegistrationException is thrown when an attempt to add or modify a service record in 
the SDDB fails. 

Service registration failures can occur:  
•= during the execution of Connector.open(), as the implementation creates a new service record for 

the service specified by Connector.open(); 

•= when a run-before-connect service invokes the acceptAndOpen() method and the implementation 
attempts to add the service record associated with the notifier to the SDDB; and 

•= after the initial creation of the service record, when the server application attempts to modify the 
service record in the SDDB using the updateRecord() method. 
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PART B – DEVICE MANAGEMENT 
The two chapters in this section describe APIs that make it possible to change the way in which the local 
device responds to remote devices.  Chapter 7 describes: 
•= the classes that represent the essential Bluetooth objects such as LocalDevice and 

RemoteDevice; 

•= the methods that access the properties of these objects, such as their names and Bluetooth addresses; 
and 

•= the methods that manage the states of the LocalDevice, such as making the device discoverable. 

Wireless devices are potentially more vulnerable to eavesdropping and spoofing (that is, falsifying the 
origin of messages) than wired devices.  Bluetooth wireless technology includes a number of responses to 
this potential vulnerability.  Some capabilities, such as frequency hopping, are applied universally to all 
Bluetooth communications.  Other capabilities, such as encryption and authentication, can be turned on 
or off based on the needs of applications.  Chapter 8 describes the APIs used to request these optional 
security mechanisms. 
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Chapter 7 Generic Access Profile 
 

7.1 Introduction 

This chapter contains the classes that represent the essential Bluetooth objects such as LocalDevice
and RemoteDevice.  These classes provide the device management capabilities that are part of the 
Generic Access Profile (GAP), as defined in [2].  The standard control methods for the local device are in 
the LocalDevice class.  The classes DeviceClass and BluetoothStateException provide 
support for the LocalDevice class. DeviceClass has methods for retrieving the values for major 
service classes and the major and minor device classes that describe the properties of a device (these 
values are defined in [7]). Finally, the RemoteDevice class represents a remote device and provides 
methods to retrieve information about the remote device. 

7.2 GAP Classes 

The next sections provide a brief overview of the classes used in the GAP. The specification of the 
classes and methods are found in Appendix 1. 

7.2.1 class javax.bluetooth.LocalDevice 

This class provides access to and control of the local Bluetooth device. It is designed to fulfill the 
requirements of the GAP as defined in the Bluetooth specification.  

7.2.2 class javax.bluetooth.RemoteDevice 

This class represents a remote Bluetooth device. It provides basic information about a remote device, 
including the device’s Bluetooth address and its friendly name (Bluetooth device name).  

7.2.3 class javax.bluetooth.BluetoothStateException extends 
java.io.IOException 
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This exception is thrown when a device cannot honor a request that it normally supports because of the 
radio’s state.  For example, some devices do not allow inquiry when the device is connected to another 
device. 

7.2.4 class javax.bluetooth.DeviceClass 

This class defines values for the device type and the types of services on a device. 
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Chapter 8 Security 
 

8.1 Introduction 

This chapter describes the methods available to applications to request secure Bluetooth 
communications.  Client and server applications optionally can add parameters to the connection string 
argument of Connector.open() to specify the security required for connections.  This makes it 
possible for different connections that involve different services to have different levels of security.  

The parameters in the connection string can be used to set up security measures at the time that the 
connection is established. The methods of the RemoteDevice class can be used at any time by client and 
server applications to request a change in the security for a particular connection. 

8.2 Security Requests in the Connection String 

Server applications use one of the open methods of the javax.microedition.io.Connector class 
from CLDC to create a notifier object that can be used to wait for a client to connect.  For a server, the 
mandatory components of the connection string argument of the open method provide sufficient 
information to create an object of the appropriate class of notifier, and to create the appropriate service 
record (see Chapter 6).  However, optional parameters can be added to the connection string to specify 
the server’s requirements for connections with clients.  These parameters are for authentication, 
encryption, authorization and master/slave role switch. 

8.2.1 Server Requests for Authentication 

Bluetooth authentication is a means of verifying the identity of a remote device. Authentication involves 
a device-to-device challenge and response scheme that requires a 128-bit shared link key derived from a 
PIN code shared by both devices. If the PIN codes on both devices do not match, the authentication 
process fails. 
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The authenticate parameter has the following interpretation when used in a server application’s 
connection string: 
•= If authenticate=true, the implementation attempts to verify the identity of every client device 

that attempts to connect to the service. 

•= If authenticate=false, the implementation does not attempt to verify the identity of client 
devices that attempt to connect to the service. 

•= If the authenticate parameter is not present in the connection string, then the implementation 
does not attempt to verify the identity of clients unless other parameters present in the connection 
string require this identity check (see Section 8.2.2 and Section 8.2.3). 

 
Not all Bluetooth systems support authentication.  Even if authentication is supported, it is possible for 
authenticate=true to conflict with device security settings that the user has established through the 
BCC.  A BluetoothConnectionException is thrown in the Connector.open() method if 
authenticate=true and authentication is not supported, or if authentication conflicts with the current 
security settings for the device.  If there is a conflict between the security needs of an application and the 
security settings of the device, some implementations of the BCC might attempt to remove the conflict by 
asking the user to consider changing the device settings. 

8.2.2 Server Requests for Encryption 

Encryption may be applied to the communications over a data link between two Bluetooth devices.  
When activated, encryption is applied to all data transfers in both directions over this link. 

The encrypt parameter has the following interpretation when used in a server application’s connection 
string: 
•= If encrypt=true, the implementation encrypts all communications to and from this service. 

•= If encrypt=false, encryption is not required by the server application, but may be used if 
encryption is required by the client device or by other existing connections over the data link 
between these two devices. 

•= If the encrypt parameter is not present in the connection string, this is equivalent to 
encrypt=false. 

Because Bluetooth encryption requires a shared link key, encryption requires authentication.  This means 
that only certain combinations of parameter settings are valid: 
•= authenticate=true and encrypt=true is a valid combination. 
•= authenticate=true and encrypt=false is a valid combination. 
•= authenticate=false and encrypt=false is a valid combination. 
•= authenticate=false and encrypt=true is an invalid combination that results in a 

BluetoothConnectionException. 
•= encrypt=true with the authenticate parameter being absent is treated as equivalent to 

authenticate=true. 
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As was the case for authentication, not all Bluetooth systems support encryption.  Even if encryption is 
supported, it is possible for encrypt=true to conflict with device security settings that the user has 
established through the BCC.  A BluetoothConnectionException is thrown in the 
Connector.open() method if encrypt=true and encryption is not supported or encryption conflicts 
with the current security settings for the device. 

8.2.3 Server Requests for Authorization 

Bluetooth authorization is a procedure in which a user of the server device grants access to a specific 
service by a specific client device. The implementation of authorization may involve asking the user of 
the server device if the client device should be allowed to access the service.  It also may involve 
consulting a list of devices that are “trusted” and therefore are allowed to access all services. 
The authorize parameter has the following interpretation when used in a server application’s 
connection string: 
•= If authorize=true, the implementation consults with the BCC to determine whether or not the 

client device requesting a connection should be allowed access to this service. 

•= If authorize=false, all clients are allowed access to this service. 

•= If the authorize parameter is not present in the connection string, this is equivalent to 
authorize=false. 

Like encryption, authorization implies that the identity of the client device can be verified through 
authentication.  This means that only certain combinations of parameter settings are valid: 
•= authenticate=true and authorize=true is a valid combination. 

•= authenticate=true and authorize=false is a valid combination. 

•= authenticate=false and authorize=false is a valid combination. 

•= authenticate=false and authorize=true is an invalid combination that results in a 
BluetoothConnectionException. 

•= authorize=true with the authenticate parameter being absent is treated as equivalent to 
authenticate=true. 

As was the case for authentication and encryption, not all Bluetooth systems support authorization.  Even 
if authorization is supported, it is possible for authorize=true to conflict with device security settings 
that the user has established through the BCC.  A BluetoothConnectionException is thrown in the 
Connector.open() method if authorize=true and authorization is not supported or authorization 
conflicts with the current security settings for the device. 

8.2.4 Server Requests for Master Role 

Bluetooth devices form localized networks. Each Bluetooth network has one master device whose clock 
and frequency hopping sequence are used to synchronize up to seven slave devices.  A Bluetooth device 
can play either the master role or the slave role.  The device that initiates the formation of a data link to 
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another device typically becomes master of the Bluetooth network consisting of these two devices.  
However, Bluetooth wireless technology provides a procedure for a slave device to request a 
master/slave role switch. 

The master parameter has the following interpretation when used in a server application’s connection 
string: 
•= If master=true, then as soon as a connection is established, the implementation requests that the 

client and server switch roles so that the server becomes the master of the Bluetooth network 
containing these two devices. 

•= If master=false, the server is willing to be either the master or the slave. 

•= If the master parameter is not present in the connection string, this is equivalent to master=false. 
 
Not all Bluetooth systems support a master/slave role switch. If master=true and a master/slave role 
switch is not supported by the server device, a BluetoothConnectionException is thrown in the 
Connector.open() method. 

8.2.5 Client Requests in the Connection String 

Client applications also may use the parameters authenticate, encrypt and master in the 
connection string argument to Connector.open().  When used by clients, these connection parameters 
have the following interpretations: 
•= When authenticate=true, the implementation attempts to verify the identity of the server device. 

•= When encrypt=true, the implementation encrypts all communications to and from this service. As 
with servers, encrypt=true implies authenticate=true. 

•= When master=true, the client must play the role of master in communications with this server, so 
the implementation must refuse attempts by the server to initiate a role switch. 

With this API, the only device that needs to grant permission to use a service is the device that offers that 
service.  Consequently, the parameter authorize is not allowed in client connections.  A 
BluetoothConnectionException is thrown if either authorize=true or authorize=false 
appears in a client connection string. 

When a client attempts to connect to a service offered by a server, both devices have their own settings 
for the connection string parameters.  The settings indicate the requirements that each device has for this 
connection. Almost all of the possible combinations of client and server connection string parameters can 
lead to a successful connection.  The one exception is when the client and the server both set 
master=true. In this case, the connection attempt fails because of the contention over which device 
will play the master role.  The client is aware of this failure to establish a connection because the client’s 
call to Connector.open() throws a BluetoothConnectionException.  The server is unaware of 
this failure since the implementation on the server side refuses the connection attempt but does not throw 
an exception.  The server application continues to wait in a blocking call to acceptAndOpen() until 
there is a successful connection. 
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8.3 Security Classes 

Bluetooth security can be requested using the CLDC javax.microedition.io.Connector class as 
described above.  The javax.bluetooth.RemoteDevice class defined in this API also has methods 
related to security, and the following subsection provides a brief overview. The specification of the 
classes and methods are found in Appendix 1. 

8.3.1 class javax.bluetooth.RemoteDevice 

RemoteDevice contains methods that can be used at any time to request a change in the security for a 
connection or to interrogate the current security settings for a connection. The methods that change the 
security settings are intended to be used in situations where an increased level of security is required only 
for a bounded set of operations or for a brief period of time.  Some of these methods take an instance of 
javax.microedition.io.Connection as an argument.  This generic argument type is used in these 
methods so that they can apply to serial port connections, L2CAP connections and OBEX connections. 

8.4 Server Application Security 

The following sample code for a serial port server application uses optional parameters in the connection 
string to indicate that the implementation should perform authentication and encryption any time that a 
client attempts to connect to this service. 
 

/*

* Define the connection string used by this serial port

* server. The Server uses optional parameters to request that

* connections to this service are authenticated and

* encrypted. The default value ("false") will be used for

* authorize and master.

*/

String serversConnString =

"btspp://localhost:3B9FA89520078C303355AAA694238F07;

authenticate=true;encrypt=true";

try {

StreamConnectionNotifier notifier =

(StreamConnectionNotifier)Connector.open(serversConnString);
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/*

* Wait for a client to connect. If the client cannot be

* authenticated or if the link to the client cannot be

* encrypted, the connection attempt is refused by the

* API implementation without this server application even

* being aware of it.

*/

StreamConnection rfconn =

(StreamConnection)notifier.acceptAndOpen();

} catch (IOException e) {

/* handle any IOexceptions */

}

/* Provide serial port service */

8.5 Client Application Security  

This section illustrates sample code for a serial port client application. When connecting to a server using 
Connector.open(), the client uses optional parameters in the connection string to set up authentication 
and encryption. 
 

String encryptedMsg = "This message will be sent encrypted";

OutputStream os = null;

StreamConnection con = null;

ServiceRecord record;

/*

* Use the SDP Client methods to obtain a ServiceRecord from a

* SDP Server.

*/

/*

* Define a String requesting that this client's connection to

* the service described by record be authenticated and encrypted.

* The false argument means that the client does not need the

* master role.

*/

String clientsConnString =

record.getConnectionURL(ServiceRecord.AUTHENTICATE_ENCRYPT,

false);

try {



ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)   
   
 

 April 5, 2002  Java APIs for Bluetooth Wireless Technology (JSR-82)   
 

47

con = (StreamConnection)

Connector.open(clientsConnString);

/*

* If we reach this point, then the server device has been

* authenticated, and all communications between the client

* device and this server device over con are being

* encrypted.

*/

os = con.openOutputStream();

/* Send encrypted data to the server device */

os.write(encryptedMsg.getBytes());

os.close();

} catch (BluetoothConnectionException e1) {

/*

* If the server cannot be authenticated or the connection

* cannot be encrypted then this exception will be thrown.

*/

return;

} catch (IOException e) {

System.out.println(e.getMessage());

} finally {

if (con != null) {

try {

con.close();

} catch (Exception e) {

}

}

}

 
The sample code above generates the connection string using 
record.getConnectionURL(ServiceRecord.AUTHENTICATE_ENCRYPT, false);

This adds the following optional parameters to the connection string to indicate the security functions 
that the client desires when connecting to the server: 

;authenticate=true;encrypt=true;master=false 

8.6 Security Changes After Connection Establishment 

The following example shows how to change the security of a client connection after the connection is 
already established.  Assume that the connection initially was established with default security (no 
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authentication, encryption or authorization).  The example adds authentication and encryption to the 
connection to send one message, then withdraws the encryption request after the first message is sent. 

String encryptedMsg = "This message will be sent encrypted";

String clearMsg = "This message will be sent unencrypted";

OutputStream os = null;

StreamConnection con = null;

RemoteDevice remDev;

ServiceRecord record;

/*

* Use the SDP client methods to obtain a ServiceRecord from

* an SDP server.

*/

/* Create a connection string requesting no security */

String clientsConnString =

record.getConnectionURL(ServiceRecord.NOAUTHENTICATE_NOENCRYPT,

false);

try {

con = (StreamConnection)

Connector.open(clientsConnString);

remDev = RemoteDevice.getRemoteDevice(con);

if (!remDev.isEncrypted()) {

/* The connection to remDev is not currently

* encrypted, so turn on encryption.

*/

if (!remDev.authenticate() || !remDev.encrypt(con, true)) {

/* quit since unable to turn on encryption */

return;

}

}

/*

* If we reach this point, then the server device has been

* authenticated, and all communications between the client

* device and the server device over con (or any other

* connection) are being encrypted.

*/

os = con.openOutputStream();

/* Send encrypted data to the server device */

os.write(encryptedMsg.getBytes());
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/* Withdraw the request for encryption */

if (remDev.encrypt(con, false)) {

/*

* Send unencrypted data to the server device since

* successful in turning off encryption.

*/

os.write(clearMsg.getBytes());

} else {

/*

* Send encrypted data to the server device since

* unable to turn off encryption.

*/

os.write(encryptedMsg.getBytes());

}

os.close();

} catch (IOException e) {

System.out.println(e.getMessage());

} finally {

if (con != null) {

/*

* No need to do remDev.encrypt(con, false)

* before closing the connection.

*/

try {

con.close();

} catch (Exception e) {

}

}

}

 
This sample code establishes a connection to a service without requesting any Bluetooth security features 
in the connection string argument to Connector.open(). That is, the connection string created by 
getConnectionURL() includes the following connection parameters: 

;authenticate=false;encrypt=false;master=false 

The preceding sample code contains the following statements that are used to authenticate the server 
device and encrypt the serial port connection after the connection has been established: 

remDev.authenticate();

remDev.encrypt(con, true); 

The authenticate()statement is redundant because the encrypt() statement ensures that the 
connection is authenticated before beginning encryption.  However, this redundancy is harmless, as only 
one authentication need be performed. 
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As indicated in this example, withdrawing a request for encryption does not necessarily mean that 
encryption is turned off.  If other connections to this same device need encryption, then the data link that 
underlies all of the connections might continue to be encrypted, depending on the policies used in the 
BCC for this device.  

This example checks whether or not encryption was turned off to illustrate the API.  Ordinarily 
applications need not be concerned with whether or not non-sensitive information is being encrypted by 
the stack. 

While this example shows a client application using methods of the RemoteDevice class to change the 
security of communications over a connection, the same methods also can be used by server applications.  
By changing the security on a connection, a server is changing the security used for communications with 
a particular client. 
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PART C – COMMUNICATION  
To use a service on a remote Bluetooth device, the local Bluetooth device must communicate using the 
same protocol(s) as the remote service.  So that applications can conveniently access a wide variety of 
Bluetooth services, APIs are provided to allow connections to services that have RFCOMM, L2CAP or 
OBEX as their highest-level protocol (in addition to the APIs for SDP described previously).  For 
services that use some other protocol layered above one of these three (for example, TCP/IP), it should 
be possible for an application to access that service by implementing the additional protocol within the 
application. 

Chapter 9 describes the API for the Serial Port Profile, which provides a high-level interface to many 
services that use the RFCOMM protocol.  Chapter 10 describes the API for the L2CAP protocol. Chapter 
11 describes the API for the OBEX protocol. 

Because the OBEX protocol can be used over several different transmission media (infrared, wired, 
Bluetooth radio and so on), it is desirable that the OBEX APIs be independent of the other Bluetooth 
APIs.  For this reason, this specification treats the OBEX APIs in Chapter 11 as a separate optional 
package that can be used either in conjunction with the Bluetooth APIs or independently of them.  

The Generic Connection Framework (GCF) from the CLDC provides the base connection for 
communication protocol implementation. CLDC defines the following three methods for opening a 
connection, with the ‘mode’ and ‘timeouts’ parameters being optional. Timeout handling is 
implementation dependent. 

Connection Connector.open(String name);

Connection Connector.open(String name, int mode);

Connection Connector.open(String name, int mode, boolean timeouts); 

The implementation must support opening a connection with either a server connection URL or a client 
connection URL, with the default mode of READ_WRITE. The server and client connection URLs for 
each protocol are described in the following chapters. Refer to the CLDC specification for a description 
of Connector.open(). 
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Chapter 9 Serial Port Profile  

9.1 Introduction 

The RFCOMM protocol provides emulation of multiple RS-232 serial ports between two Bluetooth 
devices. The Bluetooth addresses of the two endpoints identify an RFCOMM session. Only one 
RFCOMM session can exist between any pair of devices at one time, but a session may have more than 
one connection. The number of connections that can be made simultaneously in a Bluetooth device is 
implementation dependent. A device can have more than one RFCOMM session as long as each session 
is linked to a different device. This feature is supported in this API, but according to the Bluetooth 
specification it is optional, so some Bluetooth stacks may not support it. 

9.2 API Overview 

An application that offers a service based on the Serial Port Profile (SPP) is an SPP server. An 
application that initiates a connection request to an SPP service is an SPP client. Client and server 
applications may reside on either end of an RFCOMM session. An SPP server registers its service in the 
SDDB. As part of the service registration process, a server channel identifier is added to the service 
record by the implementation. A client locates the service using the service discovery API. It then can 
connect to the service by specifying the server address and server channel identifier. After a connection 
is established, data can be transmitted in both directions between the client and server. Negotiation of 
connection parameters and flow control between two Bluetooth devices must be handled automatically 
by the SPP connection implementation.  
 

This chapter describes the capabilities that an SPP implementation must have beyond those specified for 
the interfaces StreamConnection and StreamConnectionNotifier in CLDC [3]. This chapter also 
describes the optional capabilities that an implementation may support. 

9.3 SPP Server and Client Connection URLs 

The Augmented Backus-Naur Form (ABNF) described here follows the guidelines of RFC 2234, [11]. 
The ABNF for SPP server and client connection URLs is: 

srvString = protocol colon slashes srvHost 0*5(srvParams)
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cliString = protocol colon slashes cliHost 0*3(cliParams)

protocol = btspp

btspp = %d98.116.115.112.112 ; defines the literal btspp

cliHost = address colon channel

srvHost = “localhost” colon uuid

channel = %d1-30

uuid = 1*32(HEXDIG)

colon = “:”

slashes = “//”

bool = “true” / “false”

address = 12*12(HEXDIG)

text = 1*( ALPHA / DIGIT / SP / “-” / “_” )

name = “;name=” text

master = “;master=” bool ; see constraints noted below

encrypt = “;encrypt=” bool ; see constraints noted below

authorize = “;authorize=” bool ; see constraints noted below

authenticate = “;authenticate=” bool ; see constraints noted below

cliParams = master / encrypt / authenticate

srvParams = name / master / encrypt / authorize / authenticate
 
The core rules from RFC 2234 that are being referenced are: SP for space, ALPHA for lowercase and 
uppercase alphabets, DIGIT for digits zero through nine and HEXDIG for hexadecimal digits (0-9, a-f, 
A-F). 
 
RFC 2234 specifies the values of literal text strings as being case-insensitive. For example, the rule 
master in the preceding ABNF allows all of (“;MASTER=”, “;master=”, “;MaStEr=”) as legal values. 
 
The string produced from the srvString and cliString rules must not contain both the substrings 
“;authenticate=false” and “;encrypt=true”. For the string produced from srvString, it also must not 
contain both the substrings “;authenticate=false” and “;authorize=true”. Additionally, the string produced 
from either of the srvString or cliString rules must not contain one of the params (name, …) repeated 
more than once. These constraints are being specified here because ABNF does not contain a rule that 
would achieve the desired functionality. 
 

9.4 Serial Port Service Registration 
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An SPP server must initialize the services it offers and register those services in the SDDB.  A pair of 
related objects represents a serial port service: 
1 An object that implements the javax.microedition.io.StreamConnectionNotifier 

interface.  This object listens for client connections to this service. 
2 An object that implements the javax.bluetooth.ServiceRecord interface. This object 

describes this service and how it can be accessed by remote devices. 

A server application uses the method Connector.open() with an SPP server connection URL to create 
both of these objects representing the serial port service. For example: 

 
StreamConnectionNotifier service =

(StreamConnectionNotifier)Connector.open(
“btspp://localhost:102030405060708090A1B1C1D1D1E100;name=SPPEx”);

 

Invoking Connector.open() with an SPP server connection URL argument returns a 
StreamConnectionNotifier that represents the SPP service.  The implementation of 
Connector.open() also creates a new service record that represents the SPP service. An SPP 
implementation must perform the following steps when creating this service record: 

1) An RFCOMM server channel identifier, chanN, is assigned. 
2) chanN is added to the ProtocolDescriptorList in the service record. 
3) The UUID (102030…) used in the connection string to describe the type of service being offered is 

added to the ServiceClassIDList. 
4) A ServiceName attribute is added to the service record with value “SPPEx”. 

Section 9.6 describes the details of how SPP service records are created by the API implementation and 
how server applications can modify them. 

In the case of a run-before-connect service, the service record is added to the SDDB the first time the 
server application calls acceptAndOpen() on the associated StreamConnectionNotifier (see the 
next section for a discussion of the notifier and the role of the acceptAndOpen() method).  The service 
record becomes visible to potential SPP client applications when it is added to the SDDB. 

9.5 Connection Establishment 

9.5.1 Server Connection Establishment 

As illustrated in the following example code, an SPP server creates an object of type 
StreamConnectionNotifier by: 
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•= Using the appropriate string for an SPP server as the argument to Connector.open(); and 

•= Casting the result returned from Connector.open() to the StreamConnectionNotifier
interface.

StreamConnectionNotifier service =
(StreamConnectionNotifier) Connector.open(
“btspp://localhost:102030405060708090A1B1C1D1D1E100;name=SPPEx”);

 
StreamConnection con =

(StreamConnection) service.acceptAndOpen();

 

The server uses the acceptAndOpen() method to indicate that it is ready to accept a client connection.  
The method blocks until a client connects. The example code above demonstrates that a 
StreamConnection object is returned by acceptAndOpen() when the service accepts a connection 
request from a client.  The implementation of acceptAndOpen() for the btspp notifier must cause the 
Bluetooth stack to send all communication between the client application and the server application 
through the streams associated with the object returned by acceptAndOpen().  The object returned by 
acceptAndOpen() must implement the generic StreamConnection interface, but typically will be an 
instance of a class that is tailored specifically for the SPP. 

The SPP service can accept multiple connections from different clients by calling acceptAndOpen() 
repeatedly. A new StreamConnection object is created for each connection accepted.  Each client 
accesses the same service record and connects to the service using the same RFCOMM server channel.  
If the underlying Bluetooth system does not support multiple connections, then the implementation of 
acceptAndOpen()throws a BluetoothStateException. 

The method close() in the StreamConnection object that represents an SPP server-side connection 
is used to close the connection. Refer to the CLDC specification [3] for a description of close() in the 
Connection class. 

When a run-before-connect service sends a close() message to a StreamConnectionNotifier, the 
service record associated with that notifier becomes inaccessible to clients through service discovery.  
The implementation must remove the service record from the SDDB or use any disabling features that 
the Bluetooth stack provides such that the service record remains in the SDDB but is inaccessible to 
clients. The close() message also causes the implementation to deactivate any service class bits that 
were activated by setDeviceServiceClasses(), unless another service whose notifier is not yet 
closed also had activated some of the same bits. 

If StreamConnections to this service remain open when the StreamConnectionNotifier is closed, 
it is not feasible to release the RFCOMM server channel that is assigned to this service.  Only when all of 
the StreamConnections to this service are closed and the notifier is closed should the implementation 
release the RFCOMM server channel. 

If an application does not close the StreamConnectionNotifier or all of the StreamConnections, 
then the API implementation should perform the normal termination operations when the application 
terminates. In the case of a run-before-connect service, the implementation should remove the service 
record, release the server channel and deactivate the service class bits, unless other services 
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corresponding to those same bits remain active.  Owing to the possibility of abnormal shutdowns, service 
records for run-before-connect services could remain in the SDDB and service class bits could remain 
active although the server is not running.  Removing such orphaned service records and correcting the 
service class bits is implementation dependent. 

9.5.2 Client Connection Establishment 

Before an SPP client can establish a connection to an SPP service, it must discover that service via 
service discovery. A client connection URL includes the Bluetooth device address of the server and the 
server channel identifier for the service. The method getConnectionURL() in the ServiceRecord 
interface is used to obtain the client connection URL for the service.  

Invoking the method Connector.open() with an SPP client connection URL returns a 
StreamConnection object that represents a client-side SPP connection. The following example 
demonstrates that a client establishes a connection to an SPP service identified with server channel 
identifier=5 on a device with address ‘0050C000321B’: 
 

StreamConnection con =

(StreamConnection)

Connector.open(“btspp://0050C000321B:5”); 
 
The method close() in the StreamConnection object that represents an SPP client-side connection is 
used to close the connection. Refer to the CLDC specification [3] for a description of close() in the 
Connection class. 

9.6 SPP Service Records 

The Bluetooth Profiles specification has a template for the service record used by the SPP. The API 
implementation uses this template to create a service record and insert the appropriate value for the 
RFCOMM server channel identifier.  The result is a minimal but sufficient service record. 

Table 9-1, for example, shows the template for the service record created as a result of the call 
Connector.open(“btspp://localhost:102030405060708090A1B1C1D1D1E100;name=SPPEx”

). The template in Table 9-1 is adapted from the one in the SPP specification (Part K:5 of [2]). Service 
records consist of a collection of (attrID, attrValue) pairs.  Each pair describes one attribute of the 
service.  In Table 9-1, each row that has an entry in the AttrID column corresponds to a new (attrID, 
attrValue) pair. Attribute values are represented as DataElements, which can be of various types (see [1], 
Part E, Section 3).  The Type/Size column in rows with an AttrID entry indicates the type of the 
attrValue component of this (attrID, attrValue) pair.   For example, the ServiceName row has a “String” 
entry in the Type/Size column, indicating that the value of the ServiceName attribute is a DataElement of 
type string. 
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Some attribute values have a more complex structure.  For example, when DATSEQ is listed in the 
Type/Size column, the attribute value is a sequence of other DataElements.  If an attribute value is a 
DATSEQ, then each element of the sequence has its own rows in Table 9-1.  For example, the 
ProtocolDescriptorList attribute has a DATSEQ value, and the DataElements that make up 
ProtocolDescriptorList are described in the three rows following the ProtocolDescriptorList row. 

The ProtocolDescriptorList describes the Bluetooth protocol stack that may be used to access the service 
that is described by the service record.  In this case, a connection to this serial port service can be made 
using a stack that consists of the L2CAP layer and the RFCOMM layer, implying that the server 
application communicates directly with RFCOMM.   The ProtocolDescriptorList attribute is a DATSEQ 
containing two other DATSEQs: ((L2CAP), (RFCOMM, chanN)). 

The first element (L2CAP) indicates that L2CAP is the lowest protocol layer used to access this service.3  
The second element, (RFCOMM, chanN), consists of two elements.  The first is the name of the next 
higher layer protocol, RFCOMM; the second is a protocol-specific parameter, chanN, which is the 
RFCOMM server channel identifier.  In Table 9-1, the DATSEQ (L2CAP) is described by the Protocol0 
row and the DATSEQ (RFCOMM, chanN) is described by the next two rows, Protocol1 and 
ProtocolSpecificParameter0. 

The “M/O” column in Table 9-1 indicates which service record entries are mandatory (“M”) and which 
entries are optional (“O”) according to the Bluetooth specification.  The “C/F” column in Table 9-1 
indicates which service record entries can be changed (“C”) by the server application and the 
implementation and which entries are fixed (“F”), or can be changed only by the implementation.  The 
motivation for fixing certain values is described later. 
Table 9-1 Service Record Template for SPP-based Services 

Item Definition Type/ 
Size 

Value AttrID M/O C/F Notes 

ServiceRecordHandle Uniquely 

identifies each 

record in an 

SDDB 

unsigned 

int32 

Varies 

(assign

ed by 

SDP 

server) 

See [7] M F Attr+Value added by the 

implementation when the record 

is added to the SDDB.   

ServiceClassIDList  DATSEQ  See [7] M C Attr+Value inserted by 

implementation. 

  ServiceClass0 Used by 

server 

application to 

identify a new 

type of Serial 

Port service 

UUID 

128bit 

Varies; 

e.g., 

102030

405060

708090

A1B1C

1D1D1

E100 

 O C Obtained from the connection 

string argument to 

Connector.open() and inserted 

by the implementation. 

  ServiceClass1 SerialPort UUID 16 See [7]  O C Value inserted by 

                                                           
3 Since SDP itself is a protocol that resides above L2CAP, layers below L2CAP are not included in SDP service 
records. 
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Item Definition Type/ 
Size 

Value AttrID M/O C/F Notes 

bit implementation.   

ProtocolDescriptorList  DATSEQ  See [7] M C Attr+Value inserted by 

implementation. 

  Protocol0 L2CAP UUID 

16bit 

See [7]  M F DATSEQ inserted by 

implementation.  

  Protocol1 RFCOMM UUID 

16bit 

See [7]  M F DATSEQ inserted by 

implementation.  

ProtocolSpecific

Parameter0 

Server 

Channel 

unsigned 

int8 

Varies; 

legal 

options 

are 1-

30 

 M F Value assigned and inserted by 

the implementation. Used by 

btspp clients to identify the 

service to connect to. 

ServiceName Displayable 

text name 

String Varies 0 + 

0x0100 

(base 

attrID for 

the 

primary 

language) 

O C The connection string may 

contain a name parameter (e.g., 

name=SPPEx). If so, the 

parameter value is used as the 

attribute value. Specifies the 

ServiceName in the primary 

language of the service record. 

ServiceName Displayable 

text name in 

another natural 

language 

String Varies 0 + base 

for 

another 

language 

(see next 

row) 

O C Attr+Value optionally inserted by 

server application.  Specifies the 

ServiceName in another 

language used in this service 

record. 

LanguageBaseAttribut

eIDList 

 DATSEQ  See [7] O C Attr+Value optionally inserted by 

server application.  Indicates the 

base value for a language other 

than the primary one used in the 

service record. 

ServiceDescription  Displayable 

text name 

String Varies 1 + 

language 

base  

O   C Attr+Value optionally inserted by 

server application. A brief, 

human-readable description of 

the service. 

ServiceID Unique ID for 

this specific 

service 

UUID 

128bit 

Varies; 

user 

defined 

 O C Attr+Value optionally inserted by 

server application.   This value 

may be used to denote a 

specific server application no 

matter where that application 

runs. 

 

BluetoothProfileDescri  DATSEQ  See [7] O  C Attr+Value optionally inserted by 
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Item Definition Type/ 
Size 

Value AttrID M/O C/F Notes 

ptorList server application.  Describes all 

of the Bluetooth profiles that this 

service complies with. 

  Profile#i SerialPortProfil

e 

UUID 

16bit 

See [7]  O C DATSEQ optionally inserted by 

server application; it is part of 

BluetoothProfileDescriptorList 

     Param#i Profile version unsigned 

int16  

0x0100  O C Optionally inserted by server 

application. It indicates the 

supported version of the 

corresponding Profile#i. 

ServiceAvailability Ability of 

server to 

accept new 

clients 

unsigned 

int8 

Varies. 

0xFF = 

fully 

availabl

e; 

0x00 = 

unavail 

See [7] O C Attr+Value optionally inserted by 

server application; meaning 

varies by profile. 

User Defined  

Attribute #i 

User Defined Varies  Varies O C Attr+Value optionally inserted by 

server application; these values 

are not described in the 

Bluetooth specification. 

 

9.6.1 SPP Service Record Modification 

The method Connector.open() automatically adds some service attributes to the ServiceRecord 
after creating it.  The “Notes” column of Table 9-1 indicates how attributes are added to the service 
record. The implementation adds those attributes that are mandatory according to the Bluetooth 
specification (indicated by “M” in the “M/O” column).  

The server application optionally may add other service attributes to the ServiceRecord.  There are 
many optional attributes defined in the Bluetooth SDP specification ([1], Part E) that server applications 
could use to describe various properties of their services; Table 9-1 shows only a few of these.  It is also 
possible to add user-defined attributes (those not defined by the Bluetooth specification) to service 
records as indicated in Table 9-1.  Consequently, the API has methods that allow server applications to 
add service attributes to the service record created by Connector.open(). 

In the updateServiceAvailability() method in the sample code in Section 9.7.3, the server 
application obtains the ServiceRecord that was created for it using the statement reproduced here: 

ServiceRecord record = localDev.getRecord(notifier); 

Table 9-1 shows that the implementation of Connector.open(“btspp:…”) does not add the 
ServiceAvailability attribute to the ServiceRecord.  The sample code in Section 9.7.3 uses the 
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setAttributeValue() method of the ServiceRecord interface to add the ServiceAvailability 
attribute. 
In the case of a run-before-connect service, the ServiceRecord is added to the SDDB the first time the 
server application calls acceptAndOpen() on the associated notifier.  Any modifications the server 
application made to its ServiceRecord prior to calling acceptAndOpen() will be reflected in the 
service record added to the SDDB. 

The sample code in Section 9.7.3 also makes modifications to the ServiceRecord after the initial call 
to acceptAndOpen().  The server application modifies the ServiceAvailability attribute based on the 
current number of client connections.  The modifications the server application makes to 
ServiceRecord are not immediately reflected in the copy of this service record in the SDDB.  The 
sample code uses the following method call to update the copy of the service record in the SDDB so that 
SDP clients will have visibility to the current value of the ServiceAvailability attribute: 

localDev.updateRecord(record);

9.6.2 Restrictions on Modifying Service Records 

As noted earlier, an application that needs access to a service record in the server’s SDDB must have 
access to the associated notifier: 
ServiceRecord record = localDev.getRecord(notifier); 

Because applications can access only their own notifiers, it is not possible for one application to modify 
another application’s service records in the server’s SDDB.  If a malicious application AppM could 
change the service record of another application, AppB, then AppM could: 
•= cause clients to use incorrect connection parameters so that they could not connect to AppB when 

they intended to do so; and 

•= divert connections destined for AppB to the malicious application AppM. 

Clearly, this would be undesirable, which is why applications can modify only their own service records. 
Several rows in Table 9-1 have an “F” (for “fixed”) in the C/F column; this indicates that applications – 
including the application that “owns” this service record – cannot change these entries in the service 
record.  The fixed attributes relate to the fundamental nature of the service or to the management of the 
SDDB; hence an application is not permitted to change them (only the implementation can set these 
values). 

The ServiceRecordHandle attribute described in Table 9-1 is used to uniquely identify service records in 
the SDDB.  This attribute is fixed to ensure that the SDP server implementation in the Bluetooth stack 
can manage the assignment of ServiceRecordHandle values.  

The ProtocolDescriptorList tells a client application how to connect to the service. Protocol0 and 
Protocol1 represent the (L2CAP, RFCOMM) stack that normally is used to connect to a serial port 
service. These attributes are fixed to ensure that this protocol stack is always in the 
ProtocolDescriptorList. Note that a server application optionally may add additional protocols to the 
ProtocolDescriptorList, although this is unlikely to be useful for serial port services. 
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ProtocolSpecificParameter0 is the server channel identifier.  This attribute is fixed to ensure that the 
RFCOMM implementation in the Bluetooth stack can manage the assignment of server channel values. If 
an application were permitted to change the server channel identifier, effects similar to those described 
earlier for a malicious application might result. 

The two methods that serial port servers use to change the contents of the SDDB must enforce all of 
these restrictions: 
•= StreamConnectionNotifier.acceptAndOpen(), and  

•= LocalDevice.updateRecord(). 

An exception is thrown if these restrictions are violated. See the specification of the updateRecord() 
method in Appendix 1 for additional details. 

9.6.3 Device Service Classes 

Client devices can consult the DeviceClass of a server device to get a general idea of the kind of device 
it is (for example, phone, PDA, or PC) and the major service classes it offers (for example, rendering, 
telephony, or information).  This means there are two different ways in which a server application 
describes the service it offers: 
•= by adding a service record to the SDDB, and 

•= by activating major service class bits in the DeviceClass. 

In the example code in Section 9.7.3, the defineService() method uses the 
setDeviceServiceClasses() method of the ServiceRecord interface to describe the single major 
service class provided by the server application: 

record.setDeviceServiceClasses(0x40000); 

In the example, the server offers a “rendering” service, such as a printer or a speaker.  A server uses the 
setDeviceServiceClasses() method to associate the ServiceRecord with all of the major service 
classes that describe that service.  Later, when a run-before-connect service first calls 
acceptAndOpen(), both its service record and its major service class bits are made visible to client 
devices.  In the case of the major service classes, acceptAndOpen() performs an OR of the current 
settings of the service class bits of the device with the major service classes declared by the 
setDeviceServiceClasses() method.  This OR operation might activate additional service class bits 
that indicate new capabilities for the device. 

A server application is not required to use the setDeviceServiceClasses() method.  However, it is 
recommended that a server use the method to describe its service in terms of the major service classes.  
This practice allows clients to obtain a DeviceClass for the server that accurately describes the major 
service classes provided by the server. 

9.7 Example Code 
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The next two sections illustrate example code for client and server applications.  The third section shows 
an example of a server application that makes modifications to its service record. 
 
Device A and Device B are Bluetooth devices. An application on Device A transmits data to an 
application on Device B.  

A server application on Device B registers the service. A client application on Device A invokes service 
discovery to obtain the connection URL for the service. The URL string includes the Bluetooth address 
of Device B and the server channel identifier for the service. 

9.7.1 Client Application 

/**
* A code segment of an RFCOMM client.
*
*/

/**
* The RFCOMMPrinterClient will make a connection using the connection string
* provided and send a message to the server to print the data sent.
*/

class RFCOMMPrinterClient {

/**
* Keeps the connection string in case the application would like to make
* multiple connections to a printer.
*/

private String serverConnectionString;

/**
* Creates an RFCOMMPrinterClient that will send print jobs to a printer.
*
* @param server the connection string used to connect to the server
*/

RFCOMMPrinterClient(String server) {
serverConnectionString = server;

}

/**
* Sends the data to the printer to print. This method will establish a
* connection to the server and send the String in bytes to the printer.
* This method will send the data in the default encoding scheme used by
* the local virtual machine.
*
* @param data the data to send to the printer
*
* @return true if the data was printed; false if the data failed to be
* printed
*/

public boolean printJob(String data) {
OutputStream os = null;
StreamConnection con = null;

try {
/*
* Open the connection to the server
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*/
con =(StreamConnection)Connector.open(serverConnectionString);

/*
* Sends data to remote device
*/

os = con.openOutputStream();
os.write(data.getBytes());

/*
* Close all resources
*/

os.close();
con.close();

} catch (IOException e2) {
System.out.println("Failed to print data");
System.out.println("IOException: " + e2.getMessage());
return false;

}

return true;
}

}

9.7.2 Server Application 

/**
* A code segment of SPP server.
*
*/

StreamConnectionNotifier service = null;
StreamConnection con = null;
InputStream is = null;
String serviceURL =

“btspp://localhost:102030405060708090A1B1C1D1D1E100;name=SPP Server1”;

try {
/*
* Creates an SPP service record.
*/

service = (StreamConnectionNotifier)
Connector.open(serviceURL);

/*
* Add the service record to the SDDB and
* accept a client connection.
*/

con = (StreamConnection)service.acceptAndOpen();

is = con.openInputStream();

try {

int ch;
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while ((ch = is.read()) != -1) {
/* handle data received */

}
} catch (IOException e) {

System.out.println(e.getMessage());
}

is.close();

/*
* Close connection.
*/

con.close();

/*
* Remove service record from the SDDB.
* Stop accepting connections.
*/

service.close();

} catch (IOException e) {
System.out.println(e.getMessage());

}

9.7.3 Service Record Modification 

The following example code illustrates how a run-before-connect server application can add a 
ServiceAvailability attribute to the service record to inform clients whether or not the 
ExampleSerialPortService is currently accepting new client connections. 
ExampleSerialPortService can accept up to two clients at the same time. 
 
public class SerialPortServerExample {

int clients = 0;

int maxClients = 2;

boolean stop = false;

LocalDevice localDev = LocalDevice.getLocalDevice();

StreamConnectionNotifier notifier;

/* Define ServiceAvailability values for 0, 1, and 2 clients */

DataElement fullyAvail

= new DataElement(DataElement.U_INT_1, 0xFF);

DataElement halfAvail

= new DataElement(DataElement.U_INT_1, 0x80);

DataElement unAvail

= new DataElement(DataElement.U_INT_1, 0x00);
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public static void main(String[] args) {

SerialPortServerExample server = new SerialPortServerExample();

server.defineService();

server.acceptClientConnections();

}

public void defineService() {

String connString =

"btspp://localhost:3B9FA89520078C303355AAA694238F07;name=SPP Server2";

/*

* Connector.open(connString) assigns a RFCOMM server channel

* and creates a service record using this channel.

*/

try {notifier =

(StreamConnectionNotifier)Connector.open(connString);

} catch (ServiceRegistrationException e1) {

/*

* The open method failed because unable to obtain an RFCOMM

* server channel.

*/

return;

} catch (IOException e2){

/* The open method failed due to another IOException */

return;

}

ServiceRecord record = localDev.getRecord(notifier);

/*

* Defining a rendering service. acceptAndOpen() will

* update the service class bits of the device later.

*/

record.setDeviceServiceClasses(0x40000);

/*

* Update the service record to indicate accepting

* clients--this step is optional.

*/

updateServiceAvailability(0);

}
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public void acceptClientConnections() {

if (notifier = null){

return;

}

try {

while (!stop){

/*

* acceptAndOpen() waits for the next client to

* connect to this service. The first time through the

* loop, acceptAndOpen() adds the service record to

* the SDDB and updates the service class bits of the

* device.

*/

try {

StreamConnection clientConn

= (StreamConnection)notifier.acceptAndOpen();

} catch (ServiceRegistrationException e1) {

/*

* The acceptAndOpen method failed; possibly

* because the SDDB is full or violated constraints

* when modified record.

*/

return;

} catch (IOException e) {

continue;

}

if (clients < maxClients){

/*

* Update the service record to indicate changed

* availability to potential clients.

*/

updateServiceAvailability(1);

/*

* There would be code here to start up a thread

* to communicate with this client.

* When finished with this client, the thread closes

* clientConn and calls

* updateServiceAvailability(-1).

*/

} else {

/* More clients than allowed, so drop this new one */

clientConn.close();

}
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}

} finally {

/*

* Releases the RFCOMM server channel and removes the service

* record from the SDDB.

*/

notifier.close();

}

}

/*

* This method is synchronized so that only one thread at a

* time is changing the service record and updating the count of

* clients.

*/

synchronized boolean updateServiceAvailability(int changeInClients) {

DataElement currAvail;

clients = clients + changeInClients;

switch (clients) {

case 0:

currAvail = fullyAvail;

break;

case 1:

currAvail = halfAvail;

break;

case 2:

currAvail = unAvail;

}

/*

* Get the new service record that was created by

* Connector.open for this server application.

*/

ServiceRecord record = localDev.getRecord(notifier);

/*

* Add a ServiceAvailability attribute to the in-memory version of

* the service record. The attrID for ServiceAvailability

* is 0x0008.

*/

record.setAttributeValue(0x0008, currAvail);

/*
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* Update the service record in the SDDB to match the contents

* of record. If record has not been added to the SDDB yet,

* then updateRecord does nothing –- in this case, acceptAndOpen()

* will add the modified record to the SDDB later.

*/

try {

localDev.updateRecord(record);

} catch (ServiceRegistrationException e) {

/* Unable to update the service record */

return false;

}

return true;

}

}
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Chapter 10  Logical Link Control and 
Adaptation Protocol (L2CAP) 

 

10.1 Introduction 

This chapter describes the L2CAP API, including the classes, methods and constants. L2CAP supports 
two types of connections, connection-oriented (bi-directional) and connectionless (uni-directional). All 
connections made using the connect service primitive provided by the L2CAP layer of the stack are 
connection-oriented. Connectionless data channels are established using the group communication 
concept provided by the L2CAP layer. This API does not support group communication and hence does 
not support connectionless channels.  

10.2  API Overview 

This section provides a brief description of the L2CAP API defined by this specification. The 
specification of the classes and methods are found in Appendix 1. The API supports only connection-
oriented L2CAP channels.  

An L2CAPConnectionNotifier notifies an L2CAP server when a client initiates a connection. Once 
the connection is established, an L2CAPConnection object is returned. The interface 
L2CAPConnection and L2CAPConnectionNotifier extends the Connection interface. This 
L2CAPConnection interface can be used to send data to and receive data from a remote device using the 
L2CAP protocol. 
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Figure 10-1 L2CAP in the Generic Connection Framework 

10.2.1 Channel Configuration 

Connection-oriented channels need to be configured once the connection is established.  The channel 
configuration parameters that are negotiated between Bluetooth devices are: 
•= Maximum Transmission Unit (MTU) −The payload size (in bytes) that the sender of the request is 

capable of accepting. 

•= Flush Timeout −The amount of time for which the sender’s link controller/link manager will attempt 
to successfully transmit a packet before flushing the packet. A value of 0xFFFF indicates that the 
packet will be transmitted until it is acknowledged or until the ACL link terminates; this value 
provides a reliable communication link. L2CAP provides a full-duplex communication channel that 
delivers L2CAP protocol data units in an orderly manner. L2CAP does not provide any mechanism 
to secure the reliable transmission of its protocol data units. Instead, it relies upon the retransmission 
process in the baseband to support a sufficiently reliable communications channel for higher layers.  

•= Quality of Service (QoS) − This option describes the traffic flow; see [1] Part D, Sec 6.3. 
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This API assumes that: 
•= The default Flush Timeout value provided by the stack is used for the connection. The default value, 

defined in [1] Part D, Sec 6.2, is 0xFFFF. 

•= The application can specify the incoming MTU that it would like to use for the connection. If an 
application does not specify this value, then the DEFAULT_MTU of 672 bytes is used. The 
application also can specify the MTU desired from the remote device, that is, the outgoing MTU. If 
the application does not specify this value, then it will be less than or equal to the remote device’s  
incoming MTU advertised by it during channel configuration. 

•= Quality of Service parameters are not supported in this API. The Bluetooth stack determines the QoS 
values. 

10.2.1.1 Maximum Transmission Unit (MTU) 

The implementation is responsible for configuring the channel with the requested or default MTU before 
any read/write operations can take place on the connection. The ReceiveMTU is the maximum number of 
bytes that the local device can receive in a given payload. The TransmitMTU is the maximum number of 
bytes that the local device can send to the remote device in a given payload. If DevA is the local device 
and DevB is the remote device, we define the following variants of ReceiveMTU: 
•= ReceiveMTUA – maximum payload size proposed by an application on DevA for L2CAP payloads 

received by DevA.   

•= ReceiveMTUB – maximum payload size proposed by an application on DevB for L2CAP payloads 
received by DevB. 

•= ReceiveMTUAB – maximum payload size agreed to by DevA and DevB for L2CAP payloads received 
by an application on DevA. 

There are similar variants for TransmitMTU: 
•= TransmitMTUA – maximum payload size proposed by an application on DevA for L2CAP payloads 

sent by DevA.   

•= TransmitMTUB – maximum payload size proposed by an application on DevB for L2CAP payloads 
sent by DevB. 

•= TransmitMTUAB – maximum payload size agreed to by DevA and DevB for L2CAP payloads sent by 
an application on DevA. 

If ReceiveMTUA  ≥ TransmitMTUB, then ReceiveMTUAB ≤ ReceiveMTUA.  If ReceiveMTUA < 
TransmitMTUB, then the connection between DevA and DevB fails. 

If TransmitMTUA ≤ ReceiveMTUB, then TransmitMTUAB = TransmitMTUA.  If TransmitMTUA > 
ReceiveMTUB, then the connection between DevA and DevB fails. 

When the application on the local device, DevA, calls 
Connector.open(“btl2cap://…;ReceiveMTU=1024;TransmitMTU=512”),  
ReceiveMTUA = 1024 and TransmitMTUA = 512.  When the application on the remote device, DevB 
calls 
Connector.open(“btl2cap://…;ReceiveMTU=2048;TransmitMTU=512”) 
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ReceiveMTUB = 2048 and TransmitMTUB = 512.  In this case, a connection can be formed between 
DevA and DevB with ReceiveMTUAB ≤ 1024 and TransmitMTUAB = 512. 
 
This section describes how the MTU is configured by the implementation when a connection request is 
made. There are a number of possible cases: 

1. The application specifies the ReceiveMTUA and TransmitMTUA. In this case, the implementation 
advertises the ReceiveMTUA value in the configuration request to the remote device. If the remote 
device responds with a negative configuration response, the connection fails. If the remote device 
responds with a positive configuration response, the implementation waits for the configuration 
request from the remote device. When the local device receives a configuration request from the 
remote device, it compares the ReceiveMTUB value in the incoming request to the TransmitMTUA 
specified. If the maximum size the application plans to send, TransmitMTUA, is less than or equal to 
the maximum size that the remote device can receive, ReceiveMTUB, the connection succeeds; 
otherwise the connection fails. 

2. The application specifies ReceiveMTUA, but does not specify TransmitMTUA. In this case, 
configuration with respect to the ReceiveMTUA is similar to the above scenario. The 
TransmitMTUAB  will be less than or equal to the ReceiveMTUB in the configuration request received 
from the remote device. The application should use the getTransmitMTU() method in 
L2CAPConnection class to obtain the outgoing MTU value to avoid sending too much data. 

3. The application does not specify ReceiveMTUA, but specifies TransmitMTUA. In this case, the 
implementation advertises ReceiveMTUA as the DEFAULT_MTU (672 bytes) to the remote device 
in the configuration request. The handling of TransmitMTUA is similar to Case 1.  

4. The application specifies neither the ReceiveMTUA nor the TransmitMTUA. In this case, the 
handling of ReceiveMTUA is similar to case 3, and the handling of TransmitMTUA is similar to Case 
2. 

 
  

10.3 L2CAP Connection Interface 

The following sections describe the usage of the connection string provided by the GCF for the various 
types of L2CAP connections. 

10.3.1 L2CAP Server  and Client Connection URLs 

 The Augmented Backus-Naur Form (ABNF) for L2CAP server and client connection URLs is: 

srvString = protocol colon slashes srvHost 0*7(srvParams)

cliString = protocol colon slashes cliHost 0*5(cliParams)

protocol = btl2cap
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btl2cap = %d98.116.108.50.99.97.112 ; defines the literal btl2cap

cliHost = address colon psm

srvHost = “localhost” colon uuid

psm = 4*4(HEXDIG)

uuid = 1*32(HEXDIG)

colon = “:”

slashes = “//”

bool = “true” / “false”

address = 12*12(HEXDIG)

text = 1*( ALPHA / DIGIT / SP / “-” / “_” )

name = “;name=” text ; see constraints below

master = ”;master=“ bool

encrypt = “;encrypt=” bool ; see constraints below

authorize = “;authorize=” bool ; see constraints below

authenticate = “;authenticate=” bool ; see constraints below

receiveMTU = “;receiveMTU=” 1*(DIGIT)

transmitMTU = “;transmitMTU=” 1*(DIGIT)

cliParams = master / encrypt / authenticate / receiveMTU / transmitMTU

srvParams = name / master / encrypt / authorize / authenticate

/ receiveMTU / transmitMTU

 

The core rules from the RFC 2234 [11] that are being referenced are: SP for space, ALPHA for 
lowercase and uppercase alphabets, DIGIT for digits zero through nine, and HEXDIG for hexadecimal 
digits (0-9, a-f, A-F). 

The RFC 2234 specifies the values of literal text string as being case-insensitive. For example, the rule 
master in the above ABNF allows all of the following candidates as legal (“;MASTER=”, “;master=”, 
“;MaStEr=”) values. 

The string produced from the srvString and cliString rules must not contain both the substrings 
“;authenticate=false” and “;encrypt=true”. For the string produced from srvString, it also must not 
contain both the substrings “;authenticate=false” and “;authorize=true”. Additionally, the string produced 
from either of the srvString or cliString rules must not contain one of the params (name, …) repeated 
more than once. This constraint is being specified here because ABNF does not contain a rule that would 
achieve the desired functionality. 

The psm in the preceding connection string description represents the Protocol Service Multiplexor 
(PSM) value for the service. L2CAP server applications on a device can identify themselves with a PSM 
value, which is assigned by the implementation. Legal PSM values are in the range (0x1001..0xFFFF), 
and the least significant byte must be odd and all other bytes must be even. 
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The receiveMTU and transmitMTU in the preceding connection string represent the ReceiveMTU, 
the maximum payload size proposed for reception by the client (server), and TransmitMTU, the 
maximum payload size proposed for sending by the client (server). The other parameters are explained in 
Chapter 8. 

Pseudo code to open an L2CAP client connection is shown next: 
try {

L2CAPConnection client = (L2CAPConnection)

Connector.open(“btl2cap://0050CD00321B:1001;ReceiveMTU=512;

TransmitMTU=512”);

} catch (…)

The call to Connector.open() returns only when either the connection is successfully established or 
when the connection fails. If authentication is needed, Connector.open()blocks until the process 
completes.  

Pseudo code to open an L2CAP server connection is shown next: 
try {

L2CAPConnectionNotifier server = (L2CAPConnectionNotifier)

Connector.open(“btl2cap://localhost:3B9FA89520078C303355AAA694238F08;

name=L2CAPEx”);

L2CAPConnection con = (L2CAPConnection)server.acceptAndOpen();

} catch (…)

For a server, the service record is created when Connector.open() is called, and the call to 
acceptAndOpen() causes the implementation to add the service record to the SDDB. A 
ServiceRegistrationException is thrown if the registration fails.  The next section describes the 
L2CAP service record that this API uses. 

If the client or server application requests a ReceiveMTU value greater than that which the stack can 
provide, then the implementation should cause the Connector.open() call to fail. The application 
must use LocalDevice.getProperty(“bluetooth.l2cap.receiveMTU.max”) to obtain the 
maximum MTU supported by the stack. The application can specify a ReceiveMTU value less than 
StackMTU, but it must be greater than or equal to MINIMUM_MTU (48 bytes) for the connection to 
succeed. For a successful connection between client A and server B, ReceiveMTUA must be ≥ 
TransmitMTUB, and TransmitMTUA must be ≤ ReceiveMTUB. If these conditions cannot be satisfied, 
Connector.open() should fail and throw BluetoothConnectionException for clients. For 
servers, acceptAndOpen() blocks until a successful connection to a client can be established. Once the 
connection is established, the application can obtain the ReceiveMTU value for the connection using the 
method getReceiveMTU() in the L2CAPConnection class.  

If a connection fails, a BluetoothConnectionException must be thrown by the implementation. 
This exception is a subclass of IOException, and applications can obtain the cause of failure using the 
getStatus() method of the class. If any of the arguments to Connector.open() (client or server) are 
not legal, an IllegalArgumentException must be thrown by the implementation. 

10.3.2 L2CAP Service Record 
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When an L2CAP server application calls 
Connector.open(“btl2cap://localhost:3B9FA89520078C303355AAA694238F08;name=An

L2CAP Server”)  

a service record is created in a manner similar to that described for serial port services. Table 10-1 shows 
the L2CAP service record; the rows and columns are interpreted as described in Table 9-1. 

 
There are several differences between Table 10-1 and Table 9-1:   
•= SerialPort has been removed from the ServiceClassIDList;   

•= RFCOMM has been removed from the ProtocolDescriptorList; and 

•= the BluetoothProfileDescriptorList has been removed.   

The RFCOMM protocol is closely aligned with the SPP.  However, L2CAP has no such closely aligned 
profile.  If new Bluetooth profiles are developed that operate directly over L2CAP, then a server 
application could add a BluetoothProfileDescriptorList that includes such profiles to the L2CAP service 
record. 

As was the case for the SPP, the API implementation adds all the mandatory rows of the service record 
for L2CAP; L2CAP server applications optionally may add service attributes to the service record. 

 
Table 10-1 Service Record Template for L2CAP-based Services 

Item Definition Type/
Size 

Value AttrID M/O C/F Notes 

ServiceRecordHandl

e 

Uniquely 

identifies each 

record in a 

SDDB. 

Unsigne

d int32 

Varies See [7] M F Attr+Value added by the 

implementation when the 

record is added to the SDDB. 

ServiceClassIDList  DATSE

Q 

 See [7] M C Attr+Value inserted by 

implementation. 

  ServiceClass0 Used by server 

application to 

identify type of 

L2CAP service 

UUID 

128bit 

Varies  O C Obtained from the connection 

string argument to 

Connector.open() and inserted 

by the implementation. 

ProtocolDescriptorLi

st 

 DATSE

Q 

 See [7] M C Attr+Value inserted by 

implementation. 

  Protocol0 L2CAP UUID 

16bit 

See [7]  M F DATSEQ inserted by 

implementation. 

ProtocolSpecific

Parameter0 

PSM value unsigne

d int16 

Varies  M F Value assigned and inserted 

by the implementation.  Used 

by btl2cap clients to identify 

the service to connect to. 

ServiceName Displayable 

text name 

String Varies 0 + 0x0100 O C The connection string may 

contain a name parameter 
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Item Definition Type/
Size 

Value AttrID M/O C/F Notes 

(e.g., name=An L2CAP 

Server). If so, the parameter 

value is used as the attribute 

value. Specifies the 

ServiceName in the primary 

language of the service record. 

ServiceName Displayable 

text name in 

another natural 

language 

String Varies 0 + base for 

another 

language 

O C Attr+Value optionally inserted 

by server application 

LanguageBaseAttrib

uteIDList 

 DATSE

Q 

 See [7] O C Attr+Value optionally inserted 

by server application 

ServiceDescription  Displayable 

text name 

String Varies 1 + 

language 

base 

O   C Attr+Value optionally inserted 

by server application 

ServiceAvailability Ability of 

server to 

accept new 

clients 

unsigne

d int8 

Varies.  See [7] O C Attr+Value optionally inserted 

by server application 

User Defined 

Attribute #i 

User Defined Varies  Varies O C Attr+Value optionally inserted 

by server application 

 

 

10.4 L2CAP Connection Classes 

The following subsections provide a brief overview of the classes that are used in the L2CAP API. The 
specification of the classes and methods are found in Appendix 1. 

10.4.1 interface javax.bluetooth.L2CAPConnection extends 
javax.microedition.io.Connection 

This interface represents L2CAP connections. It contains methods to obtain the MTUs used by a 
connection, and to send and receive data.  

10.4.2 interface javax.bluetooth.L2CAPConnectionNotifier extends 
javax.microedition.io.Connection 
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The only method in this interface is acceptAndOpen(), which is used by L2CAP servers to listen for 
incoming client connections.  

10.4.3 class javax.bluetooth.BluetoothConnectionException 
extends java.io.IOException 

This exception is thrown when a Bluetooth connection (RFCOMM or L2CAP) cannot be established 
successfully. The getStatus() method of this class will indicate the reason for the connection failure. 

10.5 Example Code 

This is the sample code for L2CAP client and server applications. 

10.5.1 Client Application 

/**

* The L2CAPPrinterClient will make a connection using the connection string

* provided and send a message to the server to print the data sent.

*/

class L2CAPPrinterClient {

/**

* Keeps the connection string in case the application would like to make

* multiple connections to a printer.

*/

private String serverConnectionString;

/**

* Creates an L2CAPPrinterClient object that will allow an application to

* send multiple print jobs to a Bluetooth printer.

*

* @param server the connection string used to connect to the server

*/

L2CAPPrinterClient(String server) {

serverConnectionString = server;

}

/**

* Sends a print job to the server. The print job will print the message
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* provided.

*

* @param msg a non-null message to print

*

* @return true if the message was printed; false if the message was not

* printed

*/

public boolean printJob(String msg) {

L2CAPConnection con = null;

byte[] data = null;

int index = 0;

byte[] temp = null;

try {

/*

* Create a connection to the server

*/

con = (L2CAPConnection)Connector.open(serverConnectionString);

/*

* Determine the maximum amount of data I can send to the server.

*/

int MaxOutBufSize = con.getTransmitMTU();

temp = new byte[MaxOutBufSize];

/*

* Send as many packets as are needed to send the data

*/

data = msg.getBytes();

while (index < data.length) {

/*

* Determine if this is the last packet to send or if there

* will be additional packets

*/
if ((data.length - index) < MaxOutBufSize) {

temp = new byte[data.length - index];
System.arraycopy(data, index, temp, 0,

data.length – index);
} else {

temp = new byte[MaxOutBufSize];
System.arraycopy(data, index, temp, 0, MaxOutBufSize);

}

con.send(temp);

index += MaxOutBufSize;
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}

/*

* Close the connection to the server

*/

con.close();

} catch (BluetoothConnectionException e) {

System.out.println("Failed to print message");

System.out.println("\tBluetoothConnectionException: " +

e.getMessage());

System.out.println("\tStatus: " + e.getStatus());

} catch (IOException e) {

System.out.println("Failed to print message");

System.out.println("\tIOException: " + e.getMessage());

return false;

}

return true;

}

}

10.5.2 Server Application 

The following sample code illustrates L2CAP servers: 

try {
L2CAPConnectionNotifier server = (L2CAPConnectionNotifier)

Connector.open(“btl2cap://localhost:3B9FA89520078C303355AAA694238F
08;name=L2CAP Server1”);

L2CAPConnection cliCon = (L2CAPConnection)server.acceptAndOpen();

} catch (IOException e) {
/* Handle the failure to setup a connection. */

}
/* Perform server functions. */ 
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Chapter 11  Object Exchange Protocol (OBEX) 
 

11.1 Introduction 

This chapter describes the OBject EXchange protocol (OBEX) API.  Section 11.2 provides an overview 
of the OBEX protocol.  Section 11.3 describes how to create and use client and server connection objects 
and how this API fits into the GCF.  Section 11.4 describes the connection strings used with the GCF to 
create OBEX client and server connections.  Section 11.5 describes how authentication works in this 
OBEX API.  Section 11.6 provides a short description of each class and interface of the API. The final 
section provides an example client and server application. 

11.2 OBEX Overview 

OBEX is a protocol developed by the Infrared Data Association ( IrDA® 4; see http://www.irda.org ) for 
“pushing” or “pulling” objects to and from clients and servers.  OBEX performs object transfer by 
establishing an OBEX session.  An OBEX session begins by establishing an OBEX connection with a 
CONNECT request.  The session ends with a DISCONNECT request.  Between the CONNECT and 
DISCONNECT requests, the client may GET objects from the server or PUT objects to the server.  The 
objects could be files, vCards (a data format for electronic business cards), byte arrays and so on.  The 
OBEX client also might change the active folder or directory on the server by issuing the SETPATH 
request. 

OBEX scales easily from small objects to large ones.  OBEX accomplishes this by sending an object in 
multiple OBEX packets.  When a client issues a request to PUT or GET a large object, it starts an OBEX 
operation.  The OBEX operation continues until the entire object is sent to a server, the entire object is 
retrieved from the server, or an error occurs.  To complete a PUT operation, the client (the application or 
the OBEX protocol stack) breaks the object into small pieces and sends each piece individually.  The 
client does not send a subsequent piece until the previous piece is acknowledged.  GET operations work 
in a similar way, with the server breaking the object into smaller pieces.  This packetization may be 
transparent to an application. 

OBEX, like HTTP, provides methods to pass additional information between the client and server using 
headers.  Unlike HTTP headers that are strings, OBEX headers are byte values or byte sequences. OBEX 
headers include length, name, description type and even HTTP-specific headers. There also are 64 user-
defined headers and headers for authentication, application multiplexing and so on.   

                                                           
4 IrDA is a registered trademark of the Infrared Data Association. 

http://www.irda.org/
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11.3 API Overview 

 
Figure 11-1 OBEX in the Generic Connection Framework 

The OBEX API allows an application to complete OBEX operations between a client and a server.  This 
API does not address connectionless OBEX as defined in the OBEX specification.  This OBEX  
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API supports the following OBEX operations: 
•= CONNECT 

•= PUT 

•= GET 

•= SETPATH 

•= ABORT 

•= CREATE-EMPTY 

•= PUT-DELETE 

•= DISCONNECT 

As stated in Section 11.2, OBEX packets consist of a collection of headers.  The following OBEX 
headers are accessible in this API. 
Table 11-1 OBEX Headers in the OBEX API 

Header Name How to Manipulate the Header in the API 
Count HeaderSet.getHeader(), HeaderSet.setHeader() 

Name HeaderSet.getHeader(), HeaderSet.setHeader() 

Type HeaderSet.getHeader(), HeaderSet.setHeader() 

Length HeaderSet.getHeader(), HeaderSet.setHeader() 

Time HeaderSet.getHeader(), HeaderSet.setHeader() 

Description HeaderSet.getHeader(), HeaderSet.setHeader() 

Target HeaderSet.getHeader(), HeaderSet.setHeader() 

HTTP HeaderSet.getHeader(), HeaderSet.setHeader() 

Body Operation.openInputStream(), Operation.openDataInputStream(), 

Operation.openOutputStream(), Operation.openDataOutputStream() 

End of Body Operation.openInputStream(), Operation.openDataInputStream(), 

Operation.openOutputStream(), Operation.openDataOutputStream() 

Who HeaderSet.getHeader(), HeaderSet.setHeader() 

Connection ID ClientSession.setConnectionID(), ClientSession.getConnectionID(), 

ServerRequestHandler.setConnectionID(), ServerRequestHandler.getConnectionID() 

Application Parameters HeaderSet.getHeader(), HeaderSet.setHeader() 

Authentication Challenge HeaderSet.createAuthenticationChallenge(), Authenticator.getPasswordAuthentication() 

Authentication Response Authenticator.getPasswordAuthentication(), Authenticator.validatePassword() 

Object Class HeaderSet.getHeader(), HeaderSet.setHeader() 

User Defined HeaderSet.getHeader(), HeaderSet.setHeader() 
 
Two different multiplexing models are defined in the OBEX specification.  This OBEX API is designed 
to perform multiplexing at the transport layer.  This multiplexing model relies on the multiplexing 
capabilities of the transport layer protocol. 
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As found in the CLDC specification [3], the following exceptions may be thrown by a call to 
Connector.open(). 
•= ConnectionNotFoundException – thrown when the scheme used is not legal or if the protocol 

type does not exist 

•= IllegalArgumentException – thrown when the parameters of the connection string are 
unrecognized 

•= IOException – thrown when the {target} cannot be connected to. 

11.3.1 Client Connection 

To create a client connection for OBEX, the client application uses the appropriate string defined in 
Section 11.4 and passes this string to Connector.open().  Connector.open() returns a 
javax.obex.ClientSession object.  

To establish an OBEX connection, the client creates a javax.obex.HeaderSet object using the 
createHeaderSet() method in the ClientSession interface.  Using the HeaderSet object, the 
client can specify header values for the CONNECT request.  An OBEX CONNECT packet also contains 
the OBEX version number, flags, and maximum packet length, which are maintained by the 
implementation.  To complete a CONNECT request, the client supplies the HeaderSet object to the 
connect() method in the ClientSession interface.  After the CONNECT request finishes, the OBEX 
headers received from the server are returned to the application.  If no header object is provided as an 
input parameter, a javax.obex.HeaderSet object still is returned from the connect() method.  To 
determine whether or not the request succeeded, the client calls the getResponseCode() method in the 
HeaderSet interface.  This method returns the response code sent by the server, defined in the 
javax.obex.ResponseCodes class. 

A DISCONNECT request is completed in the same way as a CONNECT request except that the 
disconnect() method is called instead of connect().  If the javax.obex.HeaderSet object 
contains more headers than can fit in one OBEX packet, a java.io.IOException is thrown. 

To complete a SETPATH operation, the client calls the setPath() method in the ClientSession 
object.  To specify the name of the target directory, set the name header to the desired target by calling 
setHeader() on the HeaderSet provided to setPath().  The client also may specify whether or not 
the server should back up one directory level before applying the name and whether or not the server 
should create the directory if it does not already exist.  If the header is too large to send in one OBEX 
packet, a java.io.IOException is thrown. 

To complete a PUT or GET operation, the client creates a javax.obex.HeaderSet object with 
createHeaderSet().  After specifying the header values, the client calls the put() or get() method 
in the javax.obex.ClientSession object.  The implementation sends the headers to the server and 
receives the reply. The put() and get() methods return the javax.obex.Operation object.  With 
this object, the client can determine whether or not the request succeeded.  If the request succeeded, the 
client may put or get a data object using output or input streams, respectively.  When the client is 
finished, the appropriate stream should be closed.  To ABORT a PUT or GET request, the client calls the 
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abort() method in the javax.obex.Operation object.  The abort() method closes all input and 
output streams and ends the operation by calling the close() method on the Operation object. 

11.3.2 Server Connection 

To create a server connection, the server provides a string to Connector.open() as specified in
Section 11.4.  Connector.open()returns a javax.obex.SessionNotifier object.  The 
SessionNotifier object waits for a client to create a transport layer connection by calling 
acceptAndOpen().  A single server may serve multiple clients by calling acceptAndOpen() multiple 
times.  The acceptAndOpen() method returns a javax.obex.Connection object.  This object 
represents a connection to a single client.  The server specifies the request handler that will respond to 
OBEX requests from the client by passing the javax.obex.ServerRequestHandler object to 
acceptAndOpen().   

The server must create a new class that extends the javax.obex.ServerRequestHandler class.  The 
server needs to implement only those methods for the OBEX requests that it supports.  For example, if 
the server does not support SETPATH requests, it need not override the onSetPath() method.  As 
requests are received, the appropriate methods are called and the server processes the requests.  When the 
server is finished, it must return the appropriate final response code defined in the 
javax.obex.ResponseCodes class. 

Server applications should not call the abort() method; if a server applications calls abort()  the 
javax.obex.Operation argument that is part of the onGet() and onPut() methods throws a 
java.io.IOException. 

If the server implementation is not able to pass all the headers that are specified by the server application 
in a reply, then the server implementation returns an OBEX_HTTP_REQ_TOO_LARGE.  If the server 
application returns a response code that is not defined in the javax.obex.ResponseCodes class, then 
the server implementation sends an OBEX_HTTP_INTERNAL_ERROR response to the client. 

11.4 Connection String Description 

To create an OBEX client or server connection object, the application uses the GCF, following the same 
format as other connection strings in that framework: 

{protocol}:[{target}][{params}]

The definition of {protocol}, {target}, and {params} depends on the transport layer that OBEX 
uses.  In general, {protocol} is defined to be {transport}obex, but OBEX over RFCOMM is an 
exception to this rule and is discussed next. 

These protocols should be implemented based on the actual transport mechanisms available on the 
device. For example, if a device with only an infrared port implements this OBEX API set, then only the 
"irdaobex" protocol needs to be implemented. Calling Connector.open() on an unsupported transport 
protocol  throws a ConnectionNotFoundException 
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11.4.1 OBEX Over RFCOMM 

The {protocol} for OBEX over RFCOMM is defined as btgoep because this is the implementation of 
the Generic Object Exchange Profile (GOEP) defined by the Bluetooth SIG.  The {target} for client 
connections is the Bluetooth address and channel identifier of the device that the client wishes to connect 
to, separated by a colon (for example, 0050C000321B:4).  The {target} for a server always is 
localhost followed by a colon and the service class UUID.  The valid {params} for OBEX over 
RFCOMM are authenticate, encrypt, authorize, and master.  The default value for all of these 
{params} is false (true is the only other valid value). 

The following is a valid client connection string for OBEX over RFCOMM: 
btgoep://0050C000321B:12

The following is a valid server connection string for OBEX over RFCOMM: 
btgoep://localhost:12AF51A9030C4B2937407F8C9ECB238A

When an application passes a valid OBEX over RFCOMM server connection string to 
Connector.open(), a Bluetooth service record is created. Table 11-2 shows the GOEP service record. 
Note that this service record contains the OBEX protocol in its ProtocolDescriptorList. 
Table 11-2 Service Record Template for GOEP-based Services 

Item Definition Type/ 
Size 

Value AttrID M/O C/F Notes 

ServiceRecordHandle Uniquely 

identifies 

each record 

in a SDDB 

Unsigned 

int32 

Varies See [7] M F Attr+Value added by the 

implementation when the record 

is added to the SDDB. 

ServiceClassIDList  DATSEQ  See [7] M C Attr+Value inserted by 

implementation. 

  ServiceClass0 Used by app 

to identify 

type of 

OBEX 

service 

UUID 

128bit 

Varies  O C Obtained from the string 

argument to Connector.open() 

and inserted by the 

implementation. 

ProtocolDescriptorList  DATSEQ  See [7] M C Attr+Value inserted by 

implementation. 

  Protocol0 L2CAP UUID 

16bit 

See [7]  M F DATSEQ inserted by 

implementation.  

  Protocol1 RFCOMM UUID 

16bit 

See [7]  M F DATSEQ inserted by 

implementation.  

ProtocolSpecific

Parameter0 

Server 

Channel 

unsigned 

int8 

Varies; 

legal 

options 

are 1-30 

 M F Value obtained from the stack 

by implementation & inserted by 

the implementation. Used by 

btgoep clients to identify the 

service to connect to. 
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Item Definition Type/ 
Size 

Value AttrID M/O C/F Notes 

  Protocol2 OBEX UUID 

16bit 

See [7]  M F DATSEQ inserted by 

implementation. 

ServiceName Displayable 

text name 

String Varies 0 + 

0x0100 

O C The connection string may 

contain a name parameter. If 

so, the parameter value is used 

as the attribute value. This is 

the ServiceName in the primary 

language of the service record. 

ServiceName Displayable 

text name in 

another 

natural 

language 

String Varies 0 + 

base for 

another 

languag

e 

O C Attr+Value optionally inserted 

by server application.  This is 

the ServiceName in one of the 

other languages used in this 

service record. 

LanguageBaseAttribut

eIDList 

 DATSEQ  See [7] O C Attr+Value optionally inserted 

by server application 

ServiceDescription  Displayable 

text name 

String Varies 1 + 

languag

e base  

O   C   Attr+Value optionally inserted 

by server application 

ServiceAvailability Ability of 

server to 

accept new 

clients 

Unsigned 

int8 

Varies.  See [7] O C Attr+Value optionally inserted 

by server application 

User Defined Attribute 

#i 

User Defined Varies  Varies O C Attr+Value optionally inserted 

by server application 

 

A pair of related objects represents an OBEX service:  

1 An object that implements the javax.obex.SessionNotifier interface and listens for client 
connections to this service; and 

2 An object that implements the ServiceRecord interface. This object describes this service and 
its connection parameters to client devices. 

 

11.4.2 OBEX Over TCP/IP 

If OBEX uses TCP/IP as its transport protocol, the {protocol} is tcpobex.  For an OBEX client, the 
{target} is the IP address of the server followed by a colon and port number. (for example, 
12.34.56.100:5005).  If no port number is specified, port number 650 is used (this is the port number 
reserved for OBEX by IANA, the Internet Assigned Numbers Authority).  A server’s {target} is a 
colon followed by the port number (for example, :5005).  If no port number is given, port number 650 is 
opened by default.  There are no valid {params} for OBEX over TCP/IP. 
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The following are valid client connection strings for OBEX over TCP/IP: 
tcpobex://132.53.12.154:5005

tcpobex://132.53.12.154

The first string creates a client that connects to port 5005.  The second string creates a client that 
connects to port 650. 

The following are valid server connection strings for OBEX over TCP/IP: 
tcpobex://:5005

tcpobex:// 

The first string creates a server that listens on port 5005.  The second string creates a server that listens 
on port 650. 

11.4.3 OBEX Over IrDA 

If OBEX uses IrDA’s Tiny TP as a transport protocol, the {protocol} is irdaobex. For OBEX clients, 
the {target} begins with discover, addr, conn, or name, followed by additional parameters, if 
necessary. For OBEX servers, the {target} begins with localhost.  

11.4.3.1 Device Discovery Identifier 

When {target} begins with discover, the IrDA protocol stack initiates a device discovery to 
determine what infrared devices are in range. If more than one device is discovered, the implementation 
attempts to connect to each of them until a successful connection and service query are completed. If no 
acceptable devices are discovered, the discovery process is repeated for an implementation-specific 
period of time before reporting failure to the application. 

IrDA stack implementations may “cache” previously discovered devices. If a list of previously 
discovered devices exists, the implementation may attempt connections to those devices. However, if the 
connection attempt fails, implementations must revert to an actual discovery attempt, as just described, 
before reporting failure to the application. 

discover may be followed by a “.” and a multi-byte hexadecimal representation of required service 
hints provided by IrLAP during the discovery process. Hint bits provided by this semantic are used to 
limit connection attempts to only those devices with the specified hint bits set. If multiple hint bits are 
provided, all bits must be present for a remote device. For example, discover.08 limits connection 
attempts to devices with the “Printer” hint bit set, discover.0110 limits connection attempts to devices 
with both the “Telephony” and “Modem” hint bits set. (Hint bits are described in [8] Section 3.4.1.1 and 
listed in [9].) IrDA-related specifications can be found at 
http://www.irda.org/standards/specifications.asp. 

Note that the “Extension” bit (0x80) of each byte is ignored. At the time of this writing, only two bytes 
of service hints are defined by [8], but more might be defined in the future, so there is no boundary on the 
number of hint bits that may be provided. 

Applications should use caution when requiring specific hint bits in client connections. Hint bits are not a 
reliable means for determining a device’s type or its available services. By requiring certain hint bits, 

http://www.irda.org/standards/specifications.asp
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applications might unnecessarily limit interoperability with remote devices that, for whatever reason, 
have failed to set those hint bits. 

11.4.3.2 Target Identifier for OBEX Servers 

To indicate availability of a service, {target} begins with localhost. localhost optionally is 
followed by a set of hint bits using the same mechanism as the discover target just described (“.” 
followed by one or more hint bytes). The hint bits specified using this mechanism are added to the hint 
bits already set on the server device. Several applications may specify the same hint bit, which will 
remain set until the last service that specifies that bit is closed. The default OBEX hint bit, 0200, is set 
automatically when opening an irdaobex server connection, regardless of whether or not it is explicitly 
specified by the application. 

11.4.3.3 Service Identification 

OBEX over IrDA allows the definition of IAS class names in the Connector.open() string via the 
{params} section.   The {params} has the name of “ias” and has the value of the list of IAS class 
names.  Individual class names are separated by “,”. 

For example, a connector string of: 
irdaobex://discover;ias=MyAppOBEX,OBEX,OBEX:IrXfer; 

specifies that the implementation should discover devices and attempt to query services based on IAS 
class names of MyAppOBEX, OBEX, and OBEX:IrXfer. 

If a list of service names is not specified, the two predefined OBEX service names are attempted by 
default. These names are OBEX and OBEX:IrXfer. 

11.4.4 OBEX Server and Client Connection URLs 

The Augmented Backus-Naur Form (ABNF) for OBEX server and client connection URLs is:

conString = tcpObex / irdaObex / btObex

btObex = btSrvString | btCliString

tcpObex = tcpSrvString | tcpCliString

irdaObex = irdaSrvString | irdaCliString

btgoep = %d98.116.103.111.101.112 ; defines the literal btgoep

tcpobex = %d116.99.112.111.98.101.120 ; defines the literal tcpobex

irdaobex = %d105.114.100.97.111.98.101.120 ; defines the literal irdaobex

tcpCliString = tcpobex colon slashes tcpHost

tcpSrvString = tcpobex colon slashes 0*1(ipPort)
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ipPort = 1*(DIGIT)

ipAddress = 3*3(%d0-255 “.”) (%d0-255)
ipName = = 1*( hostLabel "." ) topLabel
topLabel = ALPHA | ALPHA *( alphaNum | "-" ) alphaNum
hostLabel = alphaNum | alphaNum *( alphaNum | "-" ) alphaNum

tcpHost = ipName 0*1(colon ipPort) | ipAddress 0*1(colon ipPort)

btSrvString = btgoep colon slashes btSrvHost 0*5(btSrvParams)

btCliString = btgoep colon slashes btCliHost 0*3(btCliParams)

channel = %d1-30

uuid = 1*32(HEXDIG)

bool = “true” / “false”

name = “;name=” text ; see constraints below

btAddress = 12*12(HEXDIG)

master = “;master=” bool

encrypt = “;encrypt=” bool ; see constraints below

text = 1*( ALPHA / DIGIT / SP / “-” / “_” )

authorize = “;authorize=” bool ; see constraints below

authenticate = “;authenticate=” bool ; see constraints below

btCliParams = master / encrypt / authenticate

btSrvParams = name / master / encrypt / authorize / authenticate

btCliHost = btAddress colon channel

btSrvHost = “localhost” colon uuid

irdaSrvString = irdaobex colon slashes irdaSrvHost 0*1(irdaParams)

irdaCliString = irdaobex colon slashes irdaCliHost 0*1(irdaParams)

irdaSrvHost = “localhost” 0*1(“.” 1*(DIGIT))

irdaCliHost = “discover” 0*1(“.” 1*(DIGIT)) / “addr.” 2*8(HEXDIG)

/ “conn” / “name.” 1*(characters)

irdaParams = “;ias=” 1*(characters) 0*(“,” 1*(characters))

characters = %d0-255

colon = “:”

slashes = “//”

alphaNum = ALPHA | DIGIT 
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The core rules from the RFC 2234 [11] that are being referenced are: SP for space, ALPHA for 
lowercase and uppercase alphabets, DIGIT for digits zero through nine, and HEXDIG for hexadecimal 
digits (0-9, a-f, A-F). 

The RFC 2234 specifies the values of literal text string as being case-insensitive. For example the rule 
master in the above ABNF allows all of the following candidates as legal (“;MASTER=”, “;master=”, 
“;MaStEr=”) values. 

The string produced from the  srvString and cliString rules must not contain the substrings 
“;authenticate=false” and “;encrypt=true”. For the string produced from srvString, it also must not 
contain the substrings “;authenticate=false” and “;authorize=true”. Additionally, the string produced 
from either rules, srvString or cliString, also must not contain one of the params (name, …) repeated 
more than once. This constraint is being specified here since ABNF does not contain a rule that would 
achieve the desired functionality. 

11.5 Authentication 

To authenticate a client or server in OBEX, the client and server must share a secret or password.  This 
password is never actually sent or exchanged as part of the OBEX authentication procedure.  If the client 
wishes to authenticate the server, the client sends an authentication challenge header to the server.  The 
authentication challenge header contains a 16-byte challenge.  When the server receives this header, it 
determines the correct password or shared secret.  The server then combines the password with the 
challenge and applies the MD5 hash algorithm.  The resulting hash, called the response digest, is sent in 
the authentication response header.  When the client receives the authentication response header, it must 
determine what the shared secret or password is.  The client then combines the challenge it sent in the 
authentication challenge header with the correct password.  The MD5 hash algorithm is then applied.  
The resulting digest is compared to the digest received in the authentication response header.  If they are 
the same, the server has been authenticated.  The process is similar if the server wishes to authenticate 
the client. 

In this API, the authentication process is started by a call to createAuthenticationChallenge().  
This method tells the implementation to include an authentication challenge header in the next request or 
reply. This method allows the application to provide a description of the password that should be used, 
the type of access that will be granted and whether or not a user name is needed. The implementation will 
generate the challenge. 

To facilitate the authentication process in this API, the Authenticator interface provides methods that 
may be implemented by an application to respond to authentication challenges and authentication 
response headers.  The onAuthenticationChallenge() method is called when an authentication 
challenge header is received.  It provides the description (or realm as it is called in [6]), along with some 
additional information.  The challenge is not provided to the application.  Instead, the application is 
expected to provide the correct user name (if needed) and password via a PasswordAuthentication 
object by returning this object from the onAuthenticationChallenge() method.  The OBEX API 
implementation then combines the challenge it received with the password, applies the MD5 hash 
algorithm and sends the resulting hash in the authentication response header. 
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When an authentication response is received, the onAuthenticationResponse() method is called 
with the user name, if provided in the authentication response header.  The application then must 
determine what the correct password or shared secret is and return the password from the 
onAuthenticationResponse() method.  The OBEX API implementation combines the password 
returned with the challenge sent in the authentication challenge header and applies the MD5 hash 
algorithm.  The implementation then compares the response digest received in the authentication 
response header and the hash just produced.  If the values are not equal and the authentication request 
was generated by an OBEX client by a call to connect(), setPath(), delete(), get(), put(), or 
disconnect(), then an IOException is thrown by the method. Alternatively an OBEX client may 
generate the authentication request by calling createAuthenticationChallenge() on a HeaderSet 
object which is then passed to an Operation object via its sendHeaders() method. If the values are 
not equal, an IOException will be thrown after any subsequent calls to either the Operation object or 
any streams constructed by the same Operation object. If the values are not equal for an OBEX server, 
the onAuthenticationFailure() method will be called on the server's ServerRequestHandler. 
An IOException will be thrown after any subsequent calls by the server to either the Operation
object associated with this OBEX connection or any streams constructed by the same Operation object. 

11.6 OBEX Classes 

The following sections provide a brief overview of the classes used in the OBEX API. The specification 
of the classes and methods are found in Appendix 2.  

11.6.1 interface javax.obex.ClientSession extends 
javax.microedition.io.Connection 

This interface represents a client-side connection object for OBEX.  It provides methods for the 
CONNECT, DISCONNECT, SETPATH, PUT-DELETE, CREATE-EMPTY, PUT and GET operations. 

11.6.2 interface javax.obex.HeaderSet 

This interface defines the OBEX headers that may be set in an operation.  It provides get and set 
methods for all OBEX headers.  Clients can create a HeaderSet object by calling 
createHeaderSet() in the javax.obex.ClientSession object.  A server receives a HeaderSet 
object through its event handler. 

11.6.3 class javax.obex.ResponseCodes 

This class defines the valid response codes for an OBEX server. 
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11.6.4 class javax.obex.ServerRequestHandler 

This class defines the framework for handling requests from an OBEX client. The application that 
extends this class needs to override only those methods for the client requests that it supports. 

11.6.5 interface javax.obex.SessionNotifier extends 
javax.microedition.io.Connection 

This interface defines the server session notifier object that is returned following a call to 
Connector.open() for server connections.  It provides methods to wait for a client to establish a 
transport-layer connection. 

11.6.6 interface javax.obex.Operation extends 
javax.microedition.io.ContentConnection 

This interface defines an operation object that is used for PUT and GET operations.  OBEX operations 
continue automatically without application involvement as packets are read and written by the 
implementation.  This interface also provides a method to ABORT the current operation. 

11.6.7 interface Authenticator 

This interface handles authentication challenge and authentication response headers. 

11.6.8 class PasswordAuthentication 

This class encapsulates a user name and password used for authentication. 

11.7 Example Code 

This section contains sample code for a client and a server that use the OBEX API to perform 
CONNECT and GET operations. 

11.7.1 Client Application  

import java.lang.*;

import java.io.*;
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import javax.obex.*;

import javax.microedition.io.*;

/**

* This is a sample application that uses the OBEX API

* defined in this chapter to CONNECT and then GET the server's

* vCard.

*/

public class OBEXClient {

public static void main(String[] args) {

ClientSession conn = null;

StreamConnection file = null;

// Connect to the server

try {

conn = (ClientSession)

Connector.open("tcpobex://12.123.155.12:5005");

} catch (IOException e) {

System.out.println("Unable to connect to server");

return;

}

// Issue a CONNECT command to connect to the OBEX

// server

try {

HeaderSet response = conn.connect(null);

if (response.getResponseCode()!=

ResponseCodes.OBEX_HTTP_OK) {

System.out.println("Request Failed");

conn.close();

return;

}

} catch (IOException e) {

System.out.println("Transport failed");

return;

}

// Issue a GET command to the OBEX server and

// write the object to a file

try {

// Set the name of the object to retrieve

HeaderSet head = conn.createHeaderSet();

head.setHeader(HeaderSet.TYPE, "text/vCard");
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// Issue the request

Operation op = conn.get(head);

// Get the correct streams to process the request

InputStream in = op.openInputStream();

// Open the file to write to

head = op.getReceivedHeaders();

file = (StreamConnection)

Connector.open((String)head.getHeader(HeaderSet.NAME));

OutputStream out = file.openOutputStream();

// Read and write the data

int data = in.read();

while (data != -1) {

out.write((byte)data);

data = in.read();

}

// End the operation

out.close();

file.close();

in.close();

op.close();

// DISCONNECT from the server

conn.disconnect(null);

} catch (IOException e) {

System.out.println("Unable to read/write file");

} finally {

// Close the transport layer connection

try {

conn.close();

} catch (Exception e) {

}

}

}

} 

11.7.2 Server Application 

import java.lang.*;

import java.io.*;

import javax.obex.*;
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import javax.microedition.io.*;

/**

* Create a server that will respond to GET requests for the

* default vCard.

*/

public class OBEXServer extends ServerRequestHandler{

public OBEXServer() {

}

public static void main(String[] args) {

SessionNotifier notify = null;

try {

notify = (SessionNotifier)

Connector.open("tcpobex://:5005");

} catch(IOException e) {

System.out.println("Unable to create notifier");

return;

}

// Process each request

for (;;) {

try {

// Wait for a client to connect

Connection server =

notify.acceptAndOpen(new OBEXServer());

} catch (IOException e) {

System.out.println("Transport Error");

}

}

}

public int onGet(Operation op) {

try {

// Get the type of object that is being

// requested

HeaderSet head = op.getReceivedHeaders();

String type = (String)

head.getHeader(HeaderSet.TYPE);

// Determine if it is a vCard or not

if ((type == null) ||
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(!type.equals("text/vCard"))) {

return

ResponseCodes.OBEX_HTTP_FORBIDDEN;

}

DataOutputStream out =

op.openDataOutputStream();

// Open the file to read

InputConnection conn = (InputConnection)

Connector.open("file://BobSmith.vcd");

// Return the name of the vCard

head = createHeaderSet();

head.setHeader(HeaderSet.NAME,

"BobSmith.vcd");

op.sendHeaders(head);

// Read from the file

DataInputStream in =

conn.openDataInputStream();

int data;

while ((data = in.read()) != -1) {

out.write((byte)data);

}

// Close the open connections

in.close();

out.close();

op.close();

return ResponseCodes.OBEX_HTTP_OK;

} catch (IOException e) {

return ResponseCodes.OBEX_HTTP_INTERNAL_ERROR;

}

}

}
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Appendix  Javadocs 
 
This document, Java APIs for Bluetooth Wireless Technology  (JSR-82), contains the following 
appendices: 
•= Appendix 1: Detailed description of the classes and methods in the javax.bluetooth package. 

•= Appendix 2: Detailed description of the classes and methods in the javax.obex package. 
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