

Package
javax.obex

Class Summary

Interfaces

Authenticator This interface provides a way to respond to authentication challenge and authentica-
tion response headers.

ClientSession The ClientSession interface provides methods for OBEX requests.

HeaderSet The HeaderSet interface defines the methods that set and get the values of OBEX
headers.

Operation The Operation interface provides ways to manipulate a single OBEX PUT or GET
operation.

SessionNotifier The SessionNotifier interface defines a connection notifier for server-side
OBEX connections.

Classes

PasswordAuthentica-
tion

This class holds user name and password combinations.

ResponseCodes The ResponseCodes class contains the list of valid response codes a server may
send to a client.

ServerRequestHandler The ServerRequestHandler class defines an event listener that will respond to
OBEX requests made to the server.
1

 javax.obex
javax.obex
Authenticator
Declaration
public interface Authenticator

Description
This interface provides a way to respond to authentication challenge and authentication response headers. When
a client or server receives an authentication challenge or authentication response header, the
onAuthenticationChallenge() or onAuthenticationResponse() will be called, respectively,
by the implementation.

For more information on how the authentication procedure works in OBEX, please review the IrOBEX
specification at http://www.irda.org.
Authentication Challenges
When a client or server receives an authentication challenge header, the
onAuthenticationChallenge() method will be invoked by the OBEX API implementation. The
application will then return the user name (if needed) and password via a PasswordAuthentication
object. The password in this object is not sent in the authentication response. Instead, the 16-byte challenge
received in the authentication challenge is combined with the password returned from the
onAuthenticationChallenge() method and passed through the MD5 hash algorithm. The resulting
value is sent in the authentication response along with the user name if it was provided.
Authentication Responses
When a client or server receives an authentication response header, the onAuthenticationResponse()
method is invoked by the API implementation with the user name received in the authentication response
header. (The user name will be null if no user name was provided in the authentication response header.) The
application must determine the correct password. This value should be returned from the
onAuthenticationResponse() method. If the authentication request should fail without the
implementation checking the password, null should be returned by the application. (This is needed for reasons
like not recognizing the user name, etc.) If the returned value is not null, the OBEX API implementation will
combine the password returned from the onAuthenticationResponse() method and challenge sent via
the authentication challenge, apply the MD5 hash algorithm, and compare the result to the response hash
received in the authentication response header. If the values are not equal, an IOException will be thrown if
the client requested authentication. If the server requested authentication, the
onAuthenticationFailure() method will be called on the ServerRequestHandler that failed
authentication. The connection is not closed if authentication failed.

Member Summary
Methods

public PasswordAu-
thentication

onAuthenticationChallenge(String, boolean, boolean)
Called when a client or a server receives an authentication challenge header.

public byte onAuthenticationResponse(byte[])
Called when a client or server receives an authentication response header.
2

javax.obex
Methods

onAuthenticationChallenge(String, boolean, boolean)
public PasswordAuthentication onAuthenticationChallenge(java.lang.String description,

boolean isUserIdRequired, boolean isFullAccess)

Called when a client or a server receives an authentication challenge header. It should respond to the chal-
lenge with a PasswordAuthentication that contains the correct user name and password for the
challenge.

Parameters:
description - the description of which user name and password should be used; if no description is
provided in the authentication challenge or the description is encoded in an encoding scheme that is not
supported, an empty string will be provided

isUserIdRequired - true if the user ID is required; false if the user ID is not required

isFullAccess - true if full access to the server will be granted; false if read only access will be
granted

Returns: a PasswordAuthentication object containing the user name and password used for
authentication

onAuthenticationResponse(byte[])
public byte[] onAuthenticationResponse(byte[] userName)

Called when a client or server receives an authentication response header. This method will provide the user
name and expect the correct password to be returned.

Parameters:
userName - the user name provided in the authentication response; may be null

Returns: the correct password for the user name provided; if null is returned then the authentication
request failed
3

 javax.obex
javax.obex
ClientSession
Declaration
public interface ClientSession extends javax.microedition.io.Connection

All Superinterfaces: javax.microedition.io.Connection

Description
The ClientSession interface provides methods for OBEX requests. This interface provides a way to define
headers for any OBEX operation. OBEX operations are CONNECT, SETPATH, PUT, GET and
DISCONNECT. For PUTs and GETs, this interface will return a javax.obex.Operation object to
complete the operations. For CONNECT, DISCONNECT, and SETPATH operations, this interface will
complete the operation and return the result in a HeaderSet object.

Connection ID and Target Headers
According to the IrOBEX specification, a packet may not contain a Connection ID and Target header. Since the
Connection ID header is managed by the implementation, it will not send a Connection ID header if a
Connection ID was specified in a packet that has a Target header. In other words, if an application adds a Target
header to a HeaderSet object used in an OBEX operation and a Connection ID was specified, no Connection
ID will be sent in the packet containing the Target header.
CREATE-EMPTY and PUT-DELETE Requests
To perform a CREATE-EMPTY request, the client must call the put() method. With the Operation object
returned, the client must open the output stream by calling openOutputStream() and then close the stream
by calling close() on the OutputStream without writing any data. Using the DataOutputStream
returned from openDataOutputStream() works the same way.
There are two ways to perform a PUT-DELETE request. The delete() method is one way to perform a PUT-
DELETE request. The second way to perform a PUT-DELETE request is by calling put() and never calling
openOutputStream() or openDataOutputStream() on the Operation object returned from
put().
PUT example

void putObjectViaOBEX(ClientSession conn, HeaderSet head, byte[] obj)
throws IOException {

// Include the length header
head.setHeader(HeaderSet.LENGTH, new Long(obj.length));

// Initiate the PUT request
Operation op = conn.put(head);

// Open the output stream to put the object to it
OutputStream out = op.openOutputStream();

// Send the object to the server
out.write(obj);

// End the transaction
out.close();
op.close();

}

4

javax.obex
GET example
byte[] getObjectViaOBEX(ClientSession conn, HeaderSet head) throws IOException {

// Send the initial GET request to the server
Operation op = conn.get(head);

// Get the object from the input stream
InputStream in = op.openInputStream();
ByteArrayOutputStream out = new ByteArrayOutputStream();

int data = in.read();
while (data != -1) {

out.write((byte)data);
data = in.read();

}

// End the transaction
in.close();
op.close();

byte[] obj = out.toByteArray();
out.close();

return obj;
}

Member Summary
Methods

public HeaderSet connect(HeaderSet)
Completes an OBEX CONNECT operation.

public HeaderSet createHeaderSet()
Creates a javax.obex.HeaderSet object.

public HeaderSet delete(HeaderSet)
Performs an OBEX DELETE operation.

public HeaderSet disconnect(HeaderSet)
Completes an OBEX DISCONNECT operation.

public Operation get(HeaderSet)
Performs an OBEX GET operation.

public long getConnectionID()
Retrieves the connection ID that is being used in the present connection.

public Operation put(HeaderSet)
Performs an OBEX PUT operation.

public void setAuthenticator(Authenticator)
Sets the Authenticator to use with this connection.

public void setConnectionID(long)
Sets the connection ID header to include in the request packets.

public HeaderSet setPath(HeaderSet, boolean, boolean)
Completes an OBEX SETPATH operation.

Inherited Member Summary

Methods inherited from interface javax.microedition.io.Connection
5

 javax.obex
Methods

connect(HeaderSet)
public HeaderSet connect(HeaderSet headers)

throws IOException

Completes an OBEX CONNECT operation. If the headers argument is null, no headers will be sent in
the request. This method will never return null.

This method must be called and a successful response code of OBEX_HTTP_OK must be received before
put(), get(), setPath(), delete(), or disconnect() may be called. Similarly, after a success-
ful call to disconnect(), this method must be called before calling put(), get(), setPath(),
delete(), or disconnect().

Parameters:
headers - the headers to send in the CONNECT request

Returns: the headers that were returned from the server

Throws:
IOException - if an error occurred in the transport layer; if the client is already in an operation; if
this method had already been called with a successful response code of OBEX_HTTP_OK and calls to
disconnect() have not returned a response code of OBEX_HTTP_OK; if the headers defined in
headers exceed the max packet length

IllegalArgumentException - if headers was not created by a call to
createHeaderSet()

createHeaderSet()
public HeaderSet createHeaderSet()

Creates a javax.obex.HeaderSet object. This object can be used to define header values in a request.

Returns: a new javax.obex.HeaderSet object

See Also: HeaderSet

delete(HeaderSet)
public HeaderSet delete(HeaderSet headers)

throws IOException

Performs an OBEX DELETE operation. This method will never return null.

Parameters:
headers - the header to send in the DELETE request

Returns: the headers returned by the server

close

Inherited Member Summary
6

javax.obex
Throws:
IOException - if an error occurred in the transport layer; if the client is already in an operation; if an
OBEX connection does not exist because connect() has not been called; if disconnect() had
been called and a response code of OBEX_HTTP_OK was received; if the headers defined in headers
exceed the max packet length

IllegalArgumentException - if headers were not created by a call to
createHeaderSet()

disconnect(HeaderSet)
public HeaderSet disconnect(HeaderSet headers)

throws IOException

Completes an OBEX DISCONNECT operation. If the headers argument is null, no headers will be
sent in the request. This method will end the session. A new session may be started by calling con-
nect(). This method will never return null.

Parameters:
headers - the header to send in the DISCONNECT request

Returns: the headers returned by the server

Throws:
IOException - if an error occurred in the transport layer; if the client is already in an operation; if an
OBEX connection does not exist because connect() has not been called; if disconnect() has
been called and received a response code of OBEX_HTTP_OK after the last call to connect(); if the
headers defined in headers exceed the max packet length

IllegalArgumentException - if headers were not created by a call to
createHeaderSet()

get(HeaderSet)
public Operation get(HeaderSet headers)

throws IOException

Performs an OBEX GET operation. This method will send the OBEX headers provided to the server and
return an Operation object to continue with the operation. This method will never return null.

Parameters:
headers - the OBEX headers to send as part of the initial GET request

Returns: the OBEX operation that will complete the GET request

Throws:
IOException - if an error occurred in the transport layer; if an OBEX connection does not exist
because connect() has not been called; if disconnect() had been called and a response code of
OBEX_HTTP_OK was received; if connect() has not been called; if the client is already in an
operation;

IllegalArgumentException - if headers were not created by a call to
createHeaderSet()

See Also: Operation

getConnectionID()
public long getConnectionID()
7

 javax.obex
Retrieves the connection ID that is being used in the present connection. This method will return -1 if no
connection ID is being used.

Returns: the connection ID being used or -1 if no connection ID is being used

put(HeaderSet)
public Operation put(HeaderSet headers)

throws IOException

Performs an OBEX PUT operation. This method will send the OBEX headers provided to the server and
return an Operation object to continue with the PUT operation. This method will never return null.

Parameters:
headers - the OBEX headers to send in the initial PUT request

Returns: the operation object used to complete the PUT request

Throws:
IOException - if an error occurred in the transport layer; if an OBEX connection does not exist
because connect() has not been called; if disconnect() had been called and a response code of
OBEX_HTTP_OK was received; if connect() has not been called; if the client is already in an
operation;

IllegalArgumentException - if headers were not created by a call to
createHeaderSet()

See Also: Operation

setAuthenticator(Authenticator)
public void setAuthenticator(Authenticator auth)

Sets the Authenticator to use with this connection. The Authenticator allows an application to
respond to authentication challenge and authentication response headers. If no Authenticator is set,
the response to an authentication challenge or authentication response header is implementation dependent.

Parameters:
auth - the Authenticator to use for this connection

Throws:
NullPointerException - if auth is null

setConnectionID(long)
public void setConnectionID(long id)

Sets the connection ID header to include in the request packets. If a connection ID is set, it will be sent in
each request to the server except for the CONNECT request. An application only needs to set the connec-
tion ID if it is trying to operate with different targets over the same transport layer connection. If a client
receives a connection ID from the server, the implementation will continue to use that connection ID until
the application changes it or until the connection is closed.

Parameters:
id - the connection ID to use

Throws:
IllegalArgumentException - if id is not in the range 0 to 232-1
8

javax.obex
setPath(HeaderSet, boolean, boolean)
public HeaderSet setPath(HeaderSet headers, boolean backup, boolean create)

throws IOException

Completes an OBEX SETPATH operation. This method will never return null.

Parameters:
backup - if true, instructs the server to back up one directory before moving to the directory
specified in name (similar to cd .. on PCs); if false, apply name to the current directory

create - if true, instructs the server to create the directory if it does not exist; if false, instruct the
server to return an error code if the directory does not exist

headers - the headers to include in the SETPATH request

Returns: the headers that were returned from the server

Throws:
IOException - if an error occurred in the transport layer; if the client is already in an operation; if an
OBEX connection does not exist because connect() has not been called; if disconnect() had
been called and a response code of OBEX_HTTP_OK was received; if the headers defined in headers
exceed the max packet length

IllegalArgumentException - if headers were not created by a call to
createHeaderSet()
9

 javax.obex
javax.obex
HeaderSet
Declaration
public interface HeaderSet

Description
The HeaderSet interface defines the methods that set and get the values of OBEX headers.

The following table describes how the headers specified in this interface are represented in OBEX and in Java.
The Java types are used with the setHeader() and getHeader() methods and specify the type of object
that must be provided and will be returned from these methods, respectively.

The APPLICATION_PARAMETER header requires some additional explanation. The byte array provided with
the APPLICATION_PARAMETER should be of the form Tag-Length-Value according to the OBEX
specification where Tag is a byte long, Length is a byte long, and Value is up to 255 bytes long. Multiple Tag-
Length-Value triples are allowed within a single APPLICATION_PARAMETER header. The implementation
will NOT check this condition. It is mentioned only to allow for interoperability between OBEX
implementations.

User Defined Headers
OBEX allows 64 user-defined header values. Depending on the header identifier provided, headers have
different types. The table below defines the ranges and their types.

Header Values OBEX Representation Java Type

COUNT 4 byte unsigned integer java.lang.Long in the range 0 to 232-1

NAME Unicode string java.lang.String

TYPE ASCII string java.lang.String

LENGTH 4 byte unsigned integer java.lang.Long in the range 0 to 232-1

TIME_ISO_8601 ASCII string of the form
YYYYMMDDTHHMMSS[Z] where
[Z] specifies Zulu time

java.util.Calendar

TIME_4_BYTE 4 byte unsigned integer java.util.Calendar

DESCRIPTION Unicode string java.lang.String

TARGET byte sequence byte[]

HTTP byte sequence byte[]

WHO byte sequence byte[]

OBJECT_CLASS byte sequence byte[]

APPLICATION_PARAMETER byte sequence byte[]
10

javax.obex
Header Identifier Decimal Range OBEX Type Java Type

0x30 to 0x3F 48 to 63 Unicode String java.lang.String

0x70 to 0x7F 112 to 127 byte sequence byte[]

0xB0 to 0xBF 176 to 191 1 byte java.lang.Byte

0xF0 to 0xFF 240 to 255 4 byte unsigned integer java.lang.Long in the range 0 to 232-1

Member Summary
Fields

public static final APPLICATION_PARAMETER
Represents the OBEX Application Parameter header.

public static final COUNT
Represents the OBEX Count header.

public static final DESCRIPTION
Represents the OBEX Description header.

public static final HTTP
Represents the OBEX HTTP header.

public static final LENGTH
Represents the OBEX Length header.

public static final NAME
Represents the OBEX Name header.

public static final OBJECT_CLASS
Represents the OBEX Object Class header.

public static final TARGET
Represents the OBEX Target header.

public static final TIME_4_BYTE
Represents the OBEX Time header using the 4 byte representation.

public static final TIME_ISO_8601
Represents the OBEX Time header using the ISO 8601 standards.

public static final TYPE
Represents the OBEX Type header.

public static final WHO
Represents the OBEX Who header.

Methods
public void createAuthenticationChallenge(String, boolean, boolean)

Sets the authentication challenge header.
public Object getHeader(int)

Retrieves the value of the header identifier provided.
public int getHeaderList()

Retrieves the list of headers that may be retrieved via the getHeader method that
will not return null.

public int getResponseCode()
Returns the response code received from the server.

public void setHeader(int, Object)
Sets the value of the header identifier to the value provided.
11

 javax.obex
Fields

APPLICATION_PARAMETER
public static final int APPLICATION_PARAMETER

Represents the OBEX Application Parameter header. This header specifies additional application request
and response information.

The value of APPLICATION_PARAMETER is 0x4C (76).

COUNT
public static final int COUNT

Represents the OBEX Count header. This allows the connection statement to tell the server how many
objects it plans to send or retrieve.

The value of COUNT is 0xC0 (192).

DESCRIPTION
public static final int DESCRIPTION

Represents the OBEX Description header. This is a text description of the object.

The value of DESCRIPTION is 0x05 (5).

HTTP
public static final int HTTP

Represents the OBEX HTTP header. This allows an HTTP 1.X header to be included in a request or reply.

The value of HTTP is 0x47 (71).

LENGTH
public static final int LENGTH

Represents the OBEX Length header. This is the length of the object in bytes.

The value of LENGTH is 0xC3 (195).

NAME
public static final int NAME

Represents the OBEX Name header. This specifies the name of the object.

The value of NAME is 0x01 (1).

OBJECT_CLASS
public static final int OBJECT_CLASS

Represents the OBEX Object Class header. This header specifies the OBEX object class of the object.

The value of OBJECT_CLASS is 0x4F (79).
12

javax.obex
TARGET
public static final int TARGET

Represents the OBEX Target header. This is the name of the service an operation is targeted to.

The value of TARGET is 0x46 (70).

TIME_4_BYTE
public static final int TIME_4_BYTE

Represents the OBEX Time header using the 4 byte representation. This is only included for backwards
compatibility. It represents the number of seconds since January 1, 1970.

The value of TIME_4_BYTE is 0xC4 (196).

TIME_ISO_8601
public static final int TIME_ISO_8601

Represents the OBEX Time header using the ISO 8601 standards. This is the preferred time header.

The value of TIME_ISO_8601 is 0x44 (68).

TYPE
public static final int TYPE

Represents the OBEX Type header. This allows a request to specify the type of the object (e.g. text, html,
binary, etc.).

The value of TYPE is 0x42 (66).

WHO
public static final int WHO

Represents the OBEX Who header. Identifies the OBEX application to determine if the two peers are talk-
ing to each other.

The value of WHO is 0x4A (74).

Methods

createAuthenticationChallenge(String, boolean, boolean)
public void createAuthenticationChallenge(java.lang.String realm, boolean userID,

boolean access)

Sets the authentication challenge header. The realm will be encoded based upon the default encoding
scheme used by the implementation to encode strings. Therefore, the encoding scheme used to encode the
realm is application dependent.

Parameters:
realm - a short description that describes what password to use; if null no realm will be sent in the
authentication challenge header

userID - if true, a user ID is required in the reply; if false, no user ID is required
13

 javax.obex
access - if true then full access will be granted if successful; if false then read-only access will
be granted if successful

getHeader(int)
public java.lang.Object getHeader(int headerID)

throws IOException

Retrieves the value of the header identifier provided. The type of the Object returned is defined in the
description of this interface.

Parameters:
headerID - the header identifier whose value is to be returned

Returns: the value of the header provided or null if the header identifier specified is not part of this
HeaderSet object

Throws:
IllegalArgumentException - if the headerID is not one defined in this interface or any of
the user-defined headers

IOException - if an error occurred in the transport layer during the operation or if the connection
has been closed

getHeaderList()
public int[] getHeaderList()

throws IOException

Retrieves the list of headers that may be retrieved via the getHeader method that will not return null.
In other words, this method returns all the headers that are available in this object.

Returns: the array of headers that are set in this object or null if no headers are available

Throws:
IOException - if an error occurred in the transport layer during the operation or the connection has
been closed

See Also: getHeader(int)

getResponseCode()
public int getResponseCode()

throws IOException

Returns the response code received from the server. Response codes are defined in the ResponseCodes
class.

Returns: the response code retrieved from the server

Throws:
IOException - if an error occurred in the transport layer during the transaction; if this method is
called on a HeaderSet object created by calling createHeaderSet() in a ClientSession
object; if an OBEX server created this object

See Also: ResponseCodes

setHeader(int, Object)
public void setHeader(int headerID, java.lang.Object headerValue)
14

javax.obex
Sets the value of the header identifier to the value provided. The type of object must correspond to the Java
type defined in the description of this interface. If null is passed as the headerValue then the header
will be removed from the set of headers to include in the next request.

Parameters:
headerID - the identifier to include in the message

headerValue - the value of the header identifier

Throws:
IllegalArgumentException - if the header identifier provided is not one defined in this
interface or a user-defined header; if the type of headerValue is not the correct Java type as defined
in the description of this interface
15

 javax.obex
javax.obex
Operation
Declaration
public interface Operation extends javax.microedition.io.ContentConnection

All Superinterfaces: javax.microedition.io.Connection, javax.microedition.io.ContentConnection,
javax.microedition.io.InputConnection, javax.microedition.io.OutputConnection, javax.microedi-
tion.io.StreamConnection

Description
The Operation interface provides ways to manipulate a single OBEX PUT or GET operation. The
implementation of this interface sends OBEX packets as they are built. If during the operation the peer in the
operation ends the operation, an IOException is thrown on the next read from the input stream, write to the
output stream, or call to sendHeaders().

Definition of methods inherited from ContentConnection
getEncoding() will always return null.
getLength() will return the length specified by the OBEX Length header or -1 if the OBEX Length header
was not included.
getType() will return the value specified in the OBEX Type header or null if the OBEX Type header was
not included.

How Headers are Handled
As headers are received, they may be retrieved through the getReceivedHeaders() method. If new
headers are set during the operation, the new headers will be sent during the next packet exchange.
PUT example

void putObjectViaOBEX(ClientSession conn, HeaderSet head, byte[] obj)
throws IOException

{
// Include the length header
head.setHeader(head.LENGTH, new Long(obj.length));

// Initiate the PUT request
Operation op = conn.put(head);

// Open the output stream to put the object to it
DataOutputStream out = op.openDataOutputStream();

// Send the object to the server
out.write(obj);

// End the transaction
out.close();
op.close();

}

16

javax.obex
GET example
byte[] getObjectViaOBEX(ClientSession conn, HeaderSet head) throws IOException {

// Send the initial GET request to the server
Operation op = conn.get(head);

// Retrieve the length of the object being sent back
int length = op.getLength();

// Create space for the object
byte[] obj = new byte[length];

// Get the object from the input stream
DataInputStream in = trans.openDataInputStream();
in.read(obj);

// End the transaction
in.close();
op.close();

return obj;
}

Client PUT Operation Flow
For PUT operations, a call to close() the OutputStream returned from openOutputStream() or
openDataOutputStream() will signal that the request is done. (In OBEX terms, the End-Of-Body header
should be sent and the final bit in the request will be set.) At this point, the reply from the server may begin to be
processed. A call to getResponseCode() will do an implicit close on the OutputStream and therefore
signal that the request is done.

Client GET Operation Flow
For GET operation, a call to openInputStream() or openDataInputStream() will signal that the
request is done. (In OBEX terms, the final bit in the request will be set.) A call to getResponseCode() will
cause an implicit close on the InputStream. No further data may be read at this point.

Member Summary
Methods

public void abort()
Sends an ABORT message to the server.

public HeaderSet getReceivedHeaders()
Returns the headers that have been received during the operation.

public int getResponseCode()
Returns the response code received from the server.

public void sendHeaders(HeaderSet)
Specifies the headers that should be sent in the next OBEX message that is sent.

Inherited Member Summary

Methods inherited from interface javax.microedition.io.Connection
17

 javax.obex
Methods

abort()
public void abort()

throws IOException

Sends an ABORT message to the server. By calling this method, the corresponding input and output
streams will be closed along with this object. No headers are sent in the abort request. This will end the
operation since close() will be called by this method.

Throws:
IOException - if the transaction has already ended or if an OBEX server calls this method

getReceivedHeaders()
public HeaderSet getReceivedHeaders()

throws IOException

Returns the headers that have been received during the operation. Modifying the object returned has no
effect on the headers that are sent or retrieved.

Returns: the headers received during this Operation

Throws:
IOException - if this Operation has been closed

getResponseCode()
public int getResponseCode()

throws IOException

Returns the response code received from the server. Response codes are defined in the ResponseCodes
class.

Returns: the response code retrieved from the server

Throws:
IOException - if an error occurred in the transport layer during the transaction; if this object was
created by an OBEX server

See Also: ResponseCodes

close

Methods inherited from interface javax.microedition.io.ContentConnection

getEncoding, getLength, getType

Methods inherited from interface javax.microedition.io.InputConnection

openDataInputStream, openInputStream

Methods inherited from interface javax.microedition.io.OutputConnection

openDataOutputStream, openOutputStream

Inherited Member Summary
18

javax.obex
sendHeaders(HeaderSet)
public void sendHeaders(HeaderSet headers)

throws IOException

Specifies the headers that should be sent in the next OBEX message that is sent.

Parameters:
headers - the headers to send in the next message

Throws:
IOException - if this Operation has been closed or the transaction has ended and no further
messages will be exchanged

IllegalArgumentException - if headers was not created by a call to
ServerRequestHandler.createHeaderSet() or
ClientSession.createHeaderSet()

NullPointerException - if headers if null
19

 javax.obex
javax.obex
PasswordAuthentication
Declaration
public class PasswordAuthentication

java.lang.Object
|
+--javax.obex.PasswordAuthentication

Description
This class holds user name and password combinations.

Constructors

PasswordAuthentication(byte[], byte[])
public PasswordAuthentication(byte[] userName, byte[] password)

Creates a new PasswordAuthentication with the user name and password provided.

Parameters:
userName - the user name to include; this may be null

password - the password to include in the response

Member Summary
Constructors

public PasswordAuthentication(byte[], byte[])
Creates a new PasswordAuthentication with the user name and password
provided.

Methods
public byte getPassword()

Retrieves the password.
public byte getUserName()

Retrieves the user name that was specified in the constructor.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
20

javax.obex
Throws:
NullPointerException - if password is null

Methods

getPassword()
public byte[] getPassword()

Retrieves the password.

Returns: the password

getUserName()
public byte[] getUserName()

Retrieves the user name that was specified in the constructor. The user name may be null.

Returns: the user name
21

 javax.obex
javax.obex
ResponseCodes
Declaration
public class ResponseCodes

java.lang.Object
|
+--javax.obex.ResponseCodes

Description
The ResponseCodes class contains the list of valid response codes a server may send to a client.

IMPORTANT NOTE
It is important to note that these values are different then those defined in
javax.microedition.io.HttpConnection. The values in this interface represent the values defined
in the IrOBEX specification. The values in javax.microedition.io.HttpConnection represent
values defined in the HTTP specification.
OBEX_DATABASE_FULL and OBEX_DATABASE_LOCKED require further description since they are not
defined in HTTP. The server will send an OBEX_DATABASE_FULL message when the client requests that
something be placed into a database but the database is full (cannot take more data).
OBEX_DATABASE_LOCKED will be returned when the client wishes to access a database, database table, or
database record that has been locked.

Member Summary
Fields

public static final OBEX_DATABASE_FULL
Defines the OBEX DATABASE FULL response code.

public static final OBEX_DATABASE_LOCKED
Defines the OBEX DATABASE LOCKED response code.

public static final OBEX_HTTP_ACCEPTED
Defines the OBEX ACCEPTED response code.

public static final OBEX_HTTP_BAD_GATEWAY
Defines the OBEX BAD GATEWAY response code.

public static final OBEX_HTTP_BAD_METHOD
Defines the OBEX METHOD NOT ALLOWED response code.

public static final OBEX_HTTP_BAD_REQUEST
Defines the OBEX BAD REQUEST response code.

public static final OBEX_HTTP_CONFLICT
Defines the OBEX METHOD CONFLICT response code.

public static final OBEX_HTTP_CREATED
Defines the OBEX CREATED response code.

public static final OBEX_HTTP_ENTITY_TOO_LARGE
Defines the OBEX REQUESTED ENTITY TOO LARGE response code.

public static final OBEX_HTTP_FORBIDDEN
Defines the OBEX FORBIDDEN response code.

public static final OBEX_HTTP_GATEWAY_TIMEOUT
Defines the OBEX GATEWAY TIMEOUT response code.
22

javax.obex
public static final OBEX_HTTP_GONE
Defines the OBEX METHOD GONE response code.

public static final OBEX_HTTP_INTERNAL_ERROR
Defines the OBEX INTERNAL SERVER ERROR response code.

public static final OBEX_HTTP_LENGTH_REQUIRED
Defines the OBEX METHOD LENGTH REQUIRED response code.

public static final OBEX_HTTP_MOVED_PERM
Defines the OBEX MOVED PERMANENTLY response code.

public static final OBEX_HTTP_MOVED_TEMP
Defines the OBEX MOVED TEMPORARILY response code.

public static final OBEX_HTTP_MULT_CHOICE
Defines the OBEX MULTIPLE_CHOICES response code.

public static final OBEX_HTTP_NO_CONTENT
Defines the OBEX NO CONTENT response code.

public static final OBEX_HTTP_NOT_ACCEPTABLE
Defines the OBEX NOT ACCEPTABLE response code.

public static final OBEX_HTTP_NOT_AUTHORITATIVE
Defines the OBEX NON-AUTHORITATIVE INFORMATION response code.

public static final OBEX_HTTP_NOT_FOUND
Defines the OBEX NOT FOUND response code.

public static final OBEX_HTTP_NOT_IMPLEMENTED
Defines the OBEX NOT IMPLEMENTED response code.

public static final OBEX_HTTP_NOT_MODIFIED
Defines the OBEX NOT MODIFIED response code.

public static final OBEX_HTTP_OK
Defines the OBEX SUCCESS response code.

public static final OBEX_HTTP_PARTIAL
Defines the OBEX PARTIAL CONTENT response code.

public static final OBEX_HTTP_PAYMENT_REQUIRED
Defines the OBEX PAYMENT REQUIRED response code.

public static final OBEX_HTTP_PRECON_FAILED
Defines the OBEX PRECONDITION FAILED response code.

public static final OBEX_HTTP_PROXY_AUTH
Defines the OBEX PROXY AUTHENTICATION REQUIRED response code.

public static final OBEX_HTTP_REQ_TOO_LARGE
Defines the OBEX REQUESTED URL TOO LARGE response code.

public static final OBEX_HTTP_RESET
Defines the OBEX RESET CONTENT response code.

public static final OBEX_HTTP_SEE_OTHER
Defines the OBEX SEE OTHER response code.

public static final OBEX_HTTP_TIMEOUT
Defines the OBEX REQUEST TIME OUT response code.

public static final OBEX_HTTP_UNAUTHORIZED
Defines the OBEX UNAUTHORIZED response code.

public static final OBEX_HTTP_UNAVAILABLE
Defines the OBEX SERVICE UNAVAILABLE response code.

public static final OBEX_HTTP_UNSUPPORTED_TYPE
Defines the OBEX UNSUPPORTED MEDIA TYPE response code.

public static final OBEX_HTTP_USE_PROXY
Defines the OBEX USE PROXY response code.

public static final OBEX_HTTP_VERSION
Defines the OBEX HTTP VERSION NOT SUPPORTED response code.

Member Summary
23

 javax.obex
Fields

OBEX_DATABASE_FULL
public static final int OBEX_DATABASE_FULL

Defines the OBEX DATABASE FULL response code.

The value of OBEX_DATABASE_FULL is 0xE0 (224).

OBEX_DATABASE_LOCKED
public static final int OBEX_DATABASE_LOCKED

Defines the OBEX DATABASE LOCKED response code.

The value of OBEX_DATABASE_LOCKED is 0xE1 (225).

OBEX_HTTP_ACCEPTED
public static final int OBEX_HTTP_ACCEPTED

Defines the OBEX ACCEPTED response code.

The value of OBEX_HTTP_ACCEPTED is 0xA2 (162).

OBEX_HTTP_BAD_GATEWAY
public static final int OBEX_HTTP_BAD_GATEWAY

Defines the OBEX BAD GATEWAY response code.

The value of OBEX_HTTP_BAD_GATEWAY is 0xD2 (210).

OBEX_HTTP_BAD_METHOD
public static final int OBEX_HTTP_BAD_METHOD

Defines the OBEX METHOD NOT ALLOWED response code.

The value of OBEX_HTTP_BAD_METHOD is 0xC5 (197).

OBEX_HTTP_BAD_REQUEST
public static final int OBEX_HTTP_BAD_REQUEST

Defines the OBEX BAD REQUEST response code.

The value of OBEX_HTTP_BAD_REQUEST is 0xC0 (192).

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
24

javax.obex
OBEX_HTTP_CONFLICT
public static final int OBEX_HTTP_CONFLICT

Defines the OBEX METHOD CONFLICT response code.

The value of OBEX_HTTP_CONFLICT is 0xC9 (201).

OBEX_HTTP_CREATED
public static final int OBEX_HTTP_CREATED

Defines the OBEX CREATED response code.

The value of OBEX_HTTP_CREATED is 0xA1 (161).

OBEX_HTTP_ENTITY_TOO_LARGE
public static final int OBEX_HTTP_ENTITY_TOO_LARGE

Defines the OBEX REQUESTED ENTITY TOO LARGE response code.

The value of OBEX_HTTP_ENTITY_TOO_LARGE is 0xCD (205).

OBEX_HTTP_FORBIDDEN
public static final int OBEX_HTTP_FORBIDDEN

Defines the OBEX FORBIDDEN response code.

The value of OBEX_HTTP_FORBIDDEN is 0xC3 (195).

OBEX_HTTP_GATEWAY_TIMEOUT
public static final int OBEX_HTTP_GATEWAY_TIMEOUT

Defines the OBEX GATEWAY TIMEOUT response code.

The value of OBEX_HTTP_GATEWAY_TIMEOUT is 0xD4 (212).

OBEX_HTTP_GONE
public static final int OBEX_HTTP_GONE

Defines the OBEX METHOD GONE response code.

The value of OBEX_HTTP_GONE is 0xCA (202).

OBEX_HTTP_INTERNAL_ERROR
public static final int OBEX_HTTP_INTERNAL_ERROR

Defines the OBEX INTERNAL SERVER ERROR response code.

The value of OBEX_HTTP_INTERNAL_ERROR is 0xD0 (208).

OBEX_HTTP_LENGTH_REQUIRED
public static final int OBEX_HTTP_LENGTH_REQUIRED

Defines the OBEX METHOD LENGTH REQUIRED response code.

The value of OBEX_HTTP_LENGTH_REQUIRED is 0xCB (203).
25

 javax.obex
OBEX_HTTP_MOVED_PERM
public static final int OBEX_HTTP_MOVED_PERM

Defines the OBEX MOVED PERMANENTLY response code.

The value of OBEX_HTTP_MOVED_PERM is 0xB1 (177).

OBEX_HTTP_MOVED_TEMP
public static final int OBEX_HTTP_MOVED_TEMP

Defines the OBEX MOVED TEMPORARILY response code.

The value of OBEX_HTTP_MOVED_TEMP is 0xB2 (178).

OBEX_HTTP_MULT_CHOICE
public static final int OBEX_HTTP_MULT_CHOICE

Defines the OBEX MULTIPLE_CHOICES response code.

The value of OBEX_HTTP_MULT_CHOICE is 0xB0 (176).

OBEX_HTTP_NO_CONTENT
public static final int OBEX_HTTP_NO_CONTENT

Defines the OBEX NO CONTENT response code.

The value of OBEX_HTTP_NO_CONTENT is 0xA4 (164).

OBEX_HTTP_NOT_ACCEPTABLE
public static final int OBEX_HTTP_NOT_ACCEPTABLE

Defines the OBEX NOT ACCEPTABLE response code.

The value of OBEX_HTTP_NOT_ACCEPTABLE is 0xC6 (198).

OBEX_HTTP_NOT_AUTHORITATIVE
public static final int OBEX_HTTP_NOT_AUTHORITATIVE

Defines the OBEX NON-AUTHORITATIVE INFORMATION response code.

The value of OBEX_HTTP_NOT_AUTHORITATIVE is 0xA3 (163).

OBEX_HTTP_NOT_FOUND
public static final int OBEX_HTTP_NOT_FOUND

Defines the OBEX NOT FOUND response code.

The value of OBEX_HTTP_NOT_FOUND is 0xC4 (196).

OBEX_HTTP_NOT_IMPLEMENTED
public static final int OBEX_HTTP_NOT_IMPLEMENTED

Defines the OBEX NOT IMPLEMENTED response code.

The value of OBEX_HTTP_NOT_IMPLEMENTED is 0xD1 (209).
26

javax.obex
OBEX_HTTP_NOT_MODIFIED
public static final int OBEX_HTTP_NOT_MODIFIED

Defines the OBEX NOT MODIFIED response code.

The value of OBEX_HTTP_NOT_MODIFIED is 0xB4 (180).

OBEX_HTTP_OK
public static final int OBEX_HTTP_OK

Defines the OBEX SUCCESS response code.

The value of OBEX_HTTP_OK is 0xA0 (160).

OBEX_HTTP_PARTIAL
public static final int OBEX_HTTP_PARTIAL

Defines the OBEX PARTIAL CONTENT response code.

The value of OBEX_HTTP_PARTIAL is 0xA6 (166).

OBEX_HTTP_PAYMENT_REQUIRED
public static final int OBEX_HTTP_PAYMENT_REQUIRED

Defines the OBEX PAYMENT REQUIRED response code.

The value of OBEX_HTTP_PAYMENT_REQUIRED is 0xC2 (194).

OBEX_HTTP_PRECON_FAILED
public static final int OBEX_HTTP_PRECON_FAILED

Defines the OBEX PRECONDITION FAILED response code.

The value of OBEX_HTTP_PRECON_FAILED is 0xCC (204).

OBEX_HTTP_PROXY_AUTH
public static final int OBEX_HTTP_PROXY_AUTH

Defines the OBEX PROXY AUTHENTICATION REQUIRED response code.

The value of OBEX_HTTP_PROXY_AUTH is 0xC7 (199).

OBEX_HTTP_REQ_TOO_LARGE
public static final int OBEX_HTTP_REQ_TOO_LARGE

Defines the OBEX REQUESTED URL TOO LARGE response code.

The value of OBEX_HTTP_REQ_TOO_LARGE is 0xCE (206).

OBEX_HTTP_RESET
public static final int OBEX_HTTP_RESET

Defines the OBEX RESET CONTENT response code.

The value of OBEX_HTTP_RESET is 0xA5 (165).
27

 javax.obex
OBEX_HTTP_SEE_OTHER
public static final int OBEX_HTTP_SEE_OTHER

Defines the OBEX SEE OTHER response code.

The value of OBEX_HTTP_SEE_OTHER is 0xB3 (179).

OBEX_HTTP_TIMEOUT
public static final int OBEX_HTTP_TIMEOUT

Defines the OBEX REQUEST TIME OUT response code.

The value of OBEX_HTTP_TIMEOUT is 0xC8 (200).

OBEX_HTTP_UNAUTHORIZED
public static final int OBEX_HTTP_UNAUTHORIZED

Defines the OBEX UNAUTHORIZED response code.

The value of OBEX_HTTP_UNAUTHORIZED is 0xC1 (193).

OBEX_HTTP_UNAVAILABLE
public static final int OBEX_HTTP_UNAVAILABLE

Defines the OBEX SERVICE UNAVAILABLE response code.

The value of OBEX_HTTP_UNAVAILABLE is 0xD3 (211).

OBEX_HTTP_UNSUPPORTED_TYPE
public static final int OBEX_HTTP_UNSUPPORTED_TYPE

Defines the OBEX UNSUPPORTED MEDIA TYPE response code.

The value of OBEX_HTTP_UNSUPPORTED_TYPE is 0xCF (207).

OBEX_HTTP_USE_PROXY
public static final int OBEX_HTTP_USE_PROXY

Defines the OBEX USE PROXY response code.

The value of OBEX_HTTP_USE_PROXY is 0xB5 (181).

OBEX_HTTP_VERSION
public static final int OBEX_HTTP_VERSION

Defines the OBEX HTTP VERSION NOT SUPPORTED response code.

The value of OBEX_HTTP_VERSION is 0xD5 (213).
28

javax.obex
javax.obex
ServerRequestHandler
Declaration
public class ServerRequestHandler

java.lang.Object
|
+--javax.obex.ServerRequestHandler

Description
The ServerRequestHandler class defines an event listener that will respond to OBEX requests made to
the server.

The onConnect(), onSetPath(), onDelete(), onGet(), and onPut() methods may return any
response code defined in the ResponseCodes class except for OBEX_HTTP_CONTINUE. If
OBEX_HTTP_CONTINUE or a value not defined in the ResponseCodes class is returned, the server
implementation will send an OBEX_HTTP_INTERNAL_ERROR response to the client.
Connection ID and Target Headers
According to the IrOBEX specification, a packet may not contain a Connection ID and Target header. Since the
Connection ID header is managed by the implementation, it will not send a Connection ID header, if a
Connection ID was specified, in a packet that has a Target header. In other words, if an application adds a Target
header to a HeaderSet object used in an OBEX operation and a Connection ID was specified, no Connection
ID will be sent in the packet containing the Target header.
CREATE-EMPTY Requests
A CREATE-EMPTY request allows clients to create empty objects on the server. When a CREATE-EMPTY
request is received, the onPut() method will be called by the implementation. To differentiate between a
normal PUT request and a CREATE-EMPTY request, an application must open the InputStream from the
Operation object passed to the onPut() method. For a PUT request, the application will be able to read
Body data from this InputStream. For a CREATE-EMPTY request, there will be no Body data to read.
Therefore, a call to InputStream.read() will return -1.

Member Summary
Constructors

protected ServerRequestHandler()
Creates a ServerRequestHandler.

Methods
public final HeaderSet createHeaderSet()

Creates a HeaderSet object that may be used in put and get operations.
public long getConnectionID()

Retrieves the connection ID that is being used in the present connection.
public void onAuthenticationFailure(byte[])

Called when this object attempts to authenticate a client and the authentication request
fails because the response digest in the authentication response header was wrong.

public int onConnect(HeaderSet, HeaderSet)
Called when a CONNECT request is received.
29

 javax.obex
Constructors

ServerRequestHandler()
protected ServerRequestHandler()

Creates a ServerRequestHandler.

Methods

createHeaderSet()
public final HeaderSet createHeaderSet()

Creates a HeaderSet object that may be used in put and get operations.

Returns: the HeaderSet object to use in put and get operations

getConnectionID()
public long getConnectionID()

Retrieves the connection ID that is being used in the present connection. This method will return -1 if no
connection ID is being used.

Returns: the connection id being used or -1 if no connection ID is being used

onAuthenticationFailure(byte[])
public void onAuthenticationFailure(byte[] userName)

public int onDelete(HeaderSet, HeaderSet)
Called when a DELETE request is received.

public void onDisconnect(HeaderSet, HeaderSet)
Called when a DISCONNECT request is received.

public int onGet(Operation)
Called when a GET request is received.

public int onPut(Operation)
Called when a PUT request is received.

public int onSetPath(HeaderSet, HeaderSet, boolean, boolean)
Called when a SETPATH request is received.

public void setConnectionID(long)
Sets the connection ID header to include in the reply packets.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Member Summary
30

javax.obex
Called when this object attempts to authenticate a client and the authentication request fails because the
response digest in the authentication response header was wrong.

If this method is not implemented by the class that extends this class, this method will do nothing.

Parameters:
userName - the user name returned in the authentication response; null if no user name was
provided in the response

onConnect(HeaderSet, HeaderSet)
public int onConnect(HeaderSet request, HeaderSet reply)

Called when a CONNECT request is received.

If this method is not implemented by the class that extends this class, onConnect() will always return an
OBEX_HTTP_OK response code.

The headers received in the request can be retrieved from the request argument. The headers that should
be sent in the reply must be specified in the reply argument.

Parameters:
request - contains the headers sent by the client; request will never be null

reply - the headers that should be sent in the reply; reply will never be null

Returns: a response code defined in ResponseCodes that will be returned to the client; if an invalid
response code is provided, the OBEX_HTTP_INTERNAL_ERROR response code will be used

onDelete(HeaderSet, HeaderSet)
public int onDelete(HeaderSet request, HeaderSet reply)

Called when a DELETE request is received.

If this method is not implemented by the class that extends this class, onDelete() will always return an
OBEX_HTTP_NOT_IMPLEMENTED response code.

The headers received in the request can be retrieved from the request argument. The headers that should
be sent in the reply must be specified in the reply argument.

Parameters:
request - contains the headers sent by the client; request will never be null

reply - the headers that should be sent in the reply; reply will never be null

Returns: a response code defined in ResponseCodes that will be returned to the client; if an invalid
response code is provided, the OBEX_HTTP_INTERNAL_ERROR response code will be used

onDisconnect(HeaderSet, HeaderSet)
public void onDisconnect(HeaderSet request, HeaderSet reply)

Called when a DISCONNECT request is received.

The headers received in the request can be retrieved from the request argument. The headers that should
be sent in the reply must be specified in the reply argument.

Parameters:
request - contains the headers sent by the client; request will never be null

reply - the headers that should be sent in the reply; reply will never be null
31

 javax.obex
onGet(Operation)
public int onGet(Operation op)

Called when a GET request is received.

If this method is not implemented by the class that extends this class, onGet() will always return an
OBEX_HTTP_NOT_IMPLEMENTED response code.

If an ABORT request is received during the processing of a GET request, op will be closed by the imple-
mentation.

Parameters:
op - contains the headers sent by the client and allows new headers to be sent in the reply; op will
never be null

Returns: a response code defined in ResponseCodes that will be returned to the client; if an invalid
response code is provided, the OBEX_HTTP_INTERNAL_ERROR response code will be used

onPut(Operation)
public int onPut(Operation op)

Called when a PUT request is received.

If this method is not implemented by the class that extends this class, onPut() will always return an
OBEX_HTTP_NOT_IMPLEMENTED response code.

If an ABORT request is received during the processing of a PUT request, op will be closed by the imple-
mentation.

Parameters:
op - contains the headers sent by the client and allows new headers to be sent in the reply; op will
never be null

Returns: a response code defined in ResponseCodes that will be returned to the client; if an invalid
response code is provided, the OBEX_HTTP_INTERNAL_ERROR response code will be used

onSetPath(HeaderSet, HeaderSet, boolean, boolean)
public int onSetPath(HeaderSet request, HeaderSet reply, boolean backup, boolean create)

Called when a SETPATH request is received.

If this method is not implemented by the class that extends this class, onSetPath() will always return an
OBEX_HTTP_NOT_IMPLEMENTED response code.

The headers received in the request can be retrieved from the request argument. The headers that should
be sent in the reply must be specified in the reply argument.

Parameters:
request - contains the headers sent by the client; request will never be null

reply - the headers that should be sent in the reply; reply will never be null

backup - true if the client requests that the server back up one directory before changing to the path
described by name; false to apply the request to the present path

create - true if the path should be created if it does not already exist; false if the path should not
be created if it does not exist and an error code should be returned
32

javax.obex
Returns: a response code defined in ResponseCodes that will be returned to the client; if an invalid
response code is provided, the OBEX_HTTP_INTERNAL_ERROR response code will be used

setConnectionID(long)
public void setConnectionID(long id)

Sets the connection ID header to include in the reply packets.

Parameters:
id - the connection ID to use; -1 if no connection ID should be sent

Throws:
IllegalArgumentException - if id is not in the range -1 to 232-1
33

 javax.obex
javax.obex
SessionNotifier
Declaration
public interface SessionNotifier extends javax.microedition.io.Connection

All Superinterfaces: javax.microedition.io.Connection

Description
The SessionNotifier interface defines a connection notifier for server-side OBEX connections. When a
SessionNotifier is created and calls acceptAndOpen(), it will begin listening for clients to create a
connection at the transport layer. When the transport layer connection is received, the acceptAndOpen()
method will return a javax.microedition.io.Connection that is the connection to the client. The
acceptAndOpen() method also takes a ServerRequestHandler argument that will process the
requests from the client that connects to the server.

Methods

acceptAndOpen(ServerRequestHandler)
public javax.microedition.io.Connection acceptAndOpen(ServerRequestHandler handler)

throws IOException

Waits for a transport layer connection to be established and specifies the handler to handle the requests from
the client. No authenticator is associated with this connection, therefore, it is implementation dependent as
to how an authentication challenge and authentication response header will be received and processed.

Member Summary
Methods

public Connection acceptAndOpen(ServerRequestHandler)
Waits for a transport layer connection to be established and specifies the handler to
handle the requests from the client.

public Connection acceptAndOpen(ServerRequestHandler, Authenticator)
Waits for a transport layer connection to be established and specifies the handler to
handle the requests from the client and the Authenticator to use to respond to
authentication challenge and authentication response headers.

Inherited Member Summary

Methods inherited from interface javax.microedition.io.Connection

close
34

javax.obex
Additional Note for OBEX over Bluetooth
If this method is called on a SessionNotifier object that does not have a ServiceRecord in the
SDDB, the ServiceRecord for this object will be added to the SDDB. This method requests the BCC to
put the local device in connectable mode so that it will respond to connection attempts by clients.

The following checks are done to verify that the service record provided is valid. If any of these checks fail,
then a ServiceRegistrationException is thrown.

• ServiceClassIDList and ProtocolDescriptorList, the mandatory service attributes for a btgoep service
record, must be present in the ServiceRecord associated with this notifier.

• L2CAP, RFCOMM and OBEX must all be in the ProtocolDescriptorList

• The ServiceRecord associated with this notifier must not have changed the RFCOMM server
channel number

This method will not ensure that ServiceRecord associated with this notifier is a completely valid ser-
vice record. It is the responsibility of the application to ensure that the service record follows all of the
applicable syntactic and semantic rules for service record correctness.

Parameters:
handler - the request handler that will respond to OBEX requests

Returns: the connection to the client

Throws:
IOException - if an error occurs in the transport layer

NullPointerException - if handler is null

ServiceRegistrationException - if the structure of the associated service record is invalid or
if the service record could not be added successfully to the local SDDB. The structure of service record
is invalid if the service record is missing any mandatory service attributes, or has changed any of the
values described above which are fixed and cannot be changed. Failures to add the record to the SDDB
could be due to insufficient disk space, database locks, etc.

BluetoothStateException - if the server device could not be placed in connectable mode
because the device user has configured the device to be non-connectable

acceptAndOpen(ServerRequestHandler, Authenticator)
public javax.microedition.io.Connection acceptAndOpen(ServerRequestHandler handler,

Authenticator auth)

throws IOException

Waits for a transport layer connection to be established and specifies the handler to handle the requests from
the client and the Authenticator to use to respond to authentication challenge and authentication
response headers.

Additional Note for OBEX over Bluetooth
If this method is called on a SessionNotifier object that does not have a ServiceRecord in the
SDDB, the ServiceRecord for this object will be added to the SDDB. This method requests the BCC to
put the local device in connectable mode so that it will respond to connection attempts by clients.

The following checks are done to verify that the service record provided is valid. If any of these checks fail,
then a ServiceRegistrationException is thrown.

• ServiceClassIDList and ProtocolDescriptorList, the mandatory service attributes for a btgoep service
record, must be present in the ServiceRecord associated with this notifier.
35

 javax.obex
• L2CAP, RFCOMM and OBEX must all be in the ProtocolDescriptorList

• The ServiceRecord associated with this notifier must not have changed the RFCOMM server
channel number

This method will not ensure that ServiceRecord associated with this notifier is a completely valid ser-
vice record. It is the responsibility of the application to ensure that the service record follows all of the
applicable syntactic and semantic rules for service record correctness.

Parameters:
handler - the request handler that will respond to OBEX requests

auth - the Authenticator to use with this connection; if null then no Authenticator will
be used

Returns: the connection to the client

Throws:
IOException - if an error occurs in the transport layer

NullPointerException - if handler is null

ServiceRegistrationException - if the structure of the associated service record is invalid or
if the service record could not be added successfully to the local SDDB. The structure of service record
is invalid if the service record is missing any mandatory service attributes, or has changed any of the
values described above which are fixed and cannot be changed. Failures to add the record to the SDDB
could be due to insufficient disk space, database locks, etc.

BluetoothStateException - if the server device could not be placed in connectable mode
because the device user has configured the device to be non-connectable
36

	javax.obex
	Authenticator
	ClientSession
	HeaderSet
	Operation
	PasswordAuthentication
	ResponseCodes
	ServerRequestHandler
	SessionNotifier

