
 

Package
javax.bluetooth

Class Summary

Interfaces

DiscoveryListener The DiscoveryListener interface allows an application to receive 
device discovery and service discovery events.

L2CAPConnection The L2CAPConnection interface represents a connection-oriented 
L2CAP channel.

L2CAPConnectionNotifier The L2CAPConnectionNotifier interface provides an L2CAP con-
nection notifier.

ServiceRecord The ServiceRecord interface describes characteristics of a Bluetooth 
service.

Classes

DataElement The DataElement class defines the various data types that a Bluetooth 
service attribute value may have.

DeviceClass The DeviceClass class represents the class of device (CoD) record as 
defined by the Bluetooth specification.

DiscoveryAgent The DiscoveryAgent class provides methods to perform device and ser-
vice discovery.

LocalDevice The LocalDevice class defines the basic functions of the Bluetooth man-
ager.

RemoteDevice The RemoteDevice class represents a remote Bluetooth device.

UUID The UUID class defines universally unique identifiers.

Exceptions

BluetoothConnectionException This BluetoothConnectionException is thrown when a Bluetooth 
connection (L2CAP, RFCOMM, or OBEX over RFCOMM) cannot be 
established successfully.

BluetoothStateException The BluetoothStateException is thrown when a request is made to 
the Bluetooth system that the system cannot support in its present state.

ServiceRegistrationException The ServiceRegistrationException is thrown when there is a 
failure to add a service record to the local Service Discovery Database 
(SDDB) or to modify an existing service record in the SDDB.
1



 javax.bluetooth
javax.bluetooth
BluetoothConnectionException
Declaration
public class BluetoothConnectionException extends java.io.IOException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.io.IOException

|
+--javax.bluetooth.BluetoothConnectionException

Description
This BluetoothConnectionException is thrown when a Bluetooth connection (L2CAP, RFCOMM, or 
OBEX over RFCOMM) cannot be established successfully. The fields in this exception class indicate the cause 
of the exception. For example, an L2CAP connection may fail due to a security problem. This reason is passed 
on to the application through this class.

Member Summary
Fields

public static final FAILED_NOINFO
Indicates the connection to the server failed due to unknown reasons.

public static final NO_RESOURCES
Indicates the connection failed due to a lack of resources either on the local device or 
on the remote device.

public static final SECURITY_BLOCK
Indicates the connection failed because the security settings on the local device or the 
remote device were incompatible with the request.

public static final TIMEOUT
Indicates the connection to the server failed due to a timeout.

public static final UNACCEPTABLE_PARAMS
Indicates the connection failed because the configuration parameters provided were 
not acceptable to either the remote device or the local device.

public static final UNKNOWN_PSM
Indicates the connection to the server failed because no service for the given PSM was 
registered.

Constructors
public BluetoothConnectionException(int)

Creates a new BluetoothConnectionException with the error indicator 
specified.

public BluetoothConnectionException(int, String)
Creates a new BluetoothConnectionException with the error indicator and 
message specified.

Methods
2



javax.bluetooth
Fields

FAILED_NOINFO
public static final int FAILED_NOINFO

Indicates the connection to the server failed due to unknown reasons. 

The value for FAILED_NOINFO is 0x0004 (4).

NO_RESOURCES
public static final int NO_RESOURCES

Indicates the connection failed due to a lack of resources either on the local device or on the remote device. 

The value for NO_RESOURCES is 0x0003 (3).

SECURITY_BLOCK
public static final int SECURITY_BLOCK

Indicates the connection failed because the security settings on the local device or the remote device were
incompatible with the request. 

The value for SECURITY_BLOCK is 0x0002 (2).

TIMEOUT
public static final int TIMEOUT

Indicates the connection to the server failed due to a timeout. 

The value for TIMEOUT is 0x0005 (5).

UNACCEPTABLE_PARAMS
public static final int UNACCEPTABLE_PARAMS

public int getStatus()
Gets the status set in the constructor that will indicate the reason for the exception.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString

Member Summary
3



 javax.bluetooth
Indicates the connection failed because the configuration parameters provided were not acceptable to either
the remote device or the local device. 

The value for UNACCEPTABLE_PARAMS is 0x0006 (6).

UNKNOWN_PSM
public static final int UNKNOWN_PSM

Indicates the connection to the server failed because no service for the given PSM was registered. 

The value for UNKNOWN_PSM is 0x0001 (1).

Constructors

BluetoothConnectionException(int)
public BluetoothConnectionException(int error)

Creates a new BluetoothConnectionException with the error indicator specified.

Parameters:
error - indicates the exception condition; must be one of the constants described in this class

Throws:
IllegalArgumentException - if the input value is not one of the constants in this class

BluetoothConnectionException(int, String)
public BluetoothConnectionException(int error, java.lang.String msg)

Creates a new BluetoothConnectionException with the error indicator and message specified.

Parameters:
error - indicates the exception condition; must be one of the constants described in this class

msg - a description of the exception; may by null

Throws:
IllegalArgumentException - if the input value is not one of the constants in this class

Methods

getStatus()
public int getStatus()

Gets the status set in the constructor that will indicate the reason for the exception.

Returns: cause for the exception; will be one of the constants defined in this class
4



javax.bluetooth
javax.bluetooth
BluetoothStateException
Declaration
public class BluetoothStateException extends java.io.IOException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.io.IOException

|
+--javax.bluetooth.BluetoothStateException

Description
The BluetoothStateException is thrown when a request is made to the Bluetooth system that the 
system cannot support in its present state. If, however, the Bluetooth system was not in this state, it could 
support this operation. For example, some Bluetooth systems do not allow the device to go into inquiry mode if 
a connection is established. This exception would be thrown if startInquiry() were called.

Constructors

BluetoothStateException()
public BluetoothStateException()

Creates a new BluetoothStateException without a detail message.

Member Summary
Constructors

public BluetoothStateException()
Creates a new BluetoothStateException without a detail message.

public BluetoothStateException(String)
Creates a BluetoothStateException with the specified detail message.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString
5



 javax.bluetooth
BluetoothStateException(String)
public BluetoothStateException(java.lang.String msg)

Creates a BluetoothStateException with the specified detail message.

Parameters:
msg - the reason for the exception
6



javax.bluetooth
javax.bluetooth
DataElement
Declaration
public class DataElement

java.lang.Object
|
+--javax.bluetooth.DataElement

Description
The DataElement class defines the various data types that a Bluetooth service attribute value may have. The 
following table describes the data types and valid values that a DataElement object can store. 

Data Type Valid Values

NULL represents a null value 

U_INT_1 long  value range [0, 255]

U_INT_2 long value range [0, 216-1]

U_INT_4 long value range [0, 232-1]

U_INT_8 byte[] value range [0, 264-1]

U_INT_16 byte[] value range [0, 2128-1]

INT_1 long value range [-128, 127]

INT_2 long value range [-215, 215-1]

INT_4 long value range [-231, 231-1]

INT_8 long value range [-263, 263-1]

INT_16 byte[] value range [-2127, 2127-1]

URL java.lang.String

UUID javax.bluetooth.UUID

BOOL boolean

STRING java.lang.String

DATSEQ java.util.Enumeration

DATALT java.util.Enumeration

Member Summary
Fields

public static final BOOL
Defines data of type BOOL.
7



 javax.bluetooth
public static final DATALT
Defines data of type DATALT.

public static final DATSEQ
Defines data of type DATSEQ.

public static final INT_1
Defines a signed integer of size one byte.

public static final INT_16
Defines a signed integer of size sixteen bytes.

public static final INT_2
Defines a signed integer of size two bytes.

public static final INT_4
Defines a signed integer of size four bytes.

public static final INT_8
Defines a signed integer of size eight bytes.

public static final NULL
Defines data of type NULL.

public static final STRING
Defines data of type STRING.

public static final U_INT_1
Defines an unsigned integer of size one byte.

public static final U_INT_16
Defines an unsigned integer of size sixteen bytes.

public static final U_INT_2
Defines an unsigned integer of size two bytes.

public static final U_INT_4
Defines an unsigned integer of size four bytes.

public static final U_INT_8
Defines an unsigned integer of size eight bytes.

public static final URL
Defines data of type URL.

public static final UUID
Defines data of type UUID.

Constructors
public DataElement(boolean)

Creates a DataElement whose data type is BOOL and whose value is equal to 
bool

public DataElement(int)
Creates a DataElement of type NULL, DATALT, or DATSEQ.

public DataElement(int, long)
Creates a DataElement that encapsulates an integer value of size U_INT_1, 
U_INT_2, U_INT_4, INT_1, INT_2, INT_4, and INT_8.

public DataElement(int, Object)
Creates a DataElement whose data type is given by valueType and whose value 
is specified by the argument value.

Methods
public void addElement(DataElement)

Adds a DataElement to this DATALT or DATSEQ DataElement object.
public boolean getBoolean()

Returns the value of the DataElement if it is represented as a boolean.
public int getDataType()

Returns the data type of the object this DataElement represents.
public long getLong()

Returns the value of the DataElement if it can be represented as a long.

Member Summary
8



javax.bluetooth
Fields

BOOL
public static final int BOOL

Defines data of type BOOL. 

The value of the constant BOOL is 0x28 (40).

DATALT
public static final int DATALT

Defines data of type DATALT. The service attribute value whose data has this type must consider only one
of the elements of the set, i.e., the value is the not the whole set but only one element of the set. The user is
free to choose any one element. The elements of the set can be of any type defined in this class, including
DATALT. 

The value of the constant DATALT is 0x38 (56).

DATSEQ
public static final int DATSEQ

Defines data of type DATSEQ. The service attribute value whose data has this type must consider all the
elements of the list, i.e. the value is the whole set and not a subset. The elements of the set can be of any
type defined in this class, including DATSEQ. 

The value of the constant DATSEQ is 0x30 (48).

INT_1
public static final int INT_1

public int getSize()
Returns the number of DataElements that are present in this DATALT or DATSEQ 
object.

public Object getValue()
Returns the value of this DataElement as an Object.

public void insertElementAt(DataElement, int)
Inserts a DataElement at the specified location.

public boolean removeElement(DataElement)
Removes the first occurrence of the DataElement from this object.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Member Summary
9



 javax.bluetooth
Defines a signed integer of size one byte. 

The value of the constant INT_1 is 0x10 (16).

INT_16
public static final int INT_16

Defines a signed integer of size sixteen bytes. 

The value of the constant INT_16 is 0x14 (20).

INT_2
public static final int INT_2

Defines a signed integer of size two bytes. 

The value of the constant INT_2 is 0x11 (17).

INT_4
public static final int INT_4

Defines a signed integer of size four bytes. 

The value of the constant INT_4 is 0x12 (18).

INT_8
public static final int INT_8

Defines a signed integer of size eight bytes. 

The value of the constant INT_8 is 0x13 (19).

NULL
public static final int NULL

Defines data of type NULL. The value for data type DataElement.NULL is implicit, i.e., there is no rep-
resentation of it. Accordingly there is no method to retrieve it, and attempts to retrieve the value will throw
an exception. 

The value of NULL is 0x00 (0).

STRING
public static final int STRING

Defines data of type STRING. 

The value of the constant STRING is 0x20 (32).

U_INT_1
public static final int U_INT_1

Defines an unsigned integer of size one byte. 

The value of the constant U_INT_1 is 0x08 (8).
10



javax.bluetooth
U_INT_16
public static final int U_INT_16

Defines an unsigned integer of size sixteen bytes. 

The value of the constant U_INT_16 is 0x0C (12).

U_INT_2
public static final int U_INT_2

Defines an unsigned integer of size two bytes. 

The value of the constant U_INT_2 is 0x09 (9).

U_INT_4
public static final int U_INT_4

Defines an unsigned integer of size four bytes. 

The value of the constant U_INT_4 is 0x0A (10).

U_INT_8
public static final int U_INT_8

Defines an unsigned integer of size eight bytes. 

The value of the constant U_INT_8 is 0x0B (11).

URL
public static final int URL

Defines data of type URL. 

The value of the constant URL is 0x40 (64).

UUID
public static final int UUID

Defines data of type UUID. 

The value of the constant UUID is 0x18 (24).

Constructors

DataElement(boolean)
public DataElement(boolean bool)

Creates a DataElement whose data type is BOOL and whose value is equal to bool

Parameters:
bool - the value of the DataElement of type BOOL.

See Also: BOOL
11



 javax.bluetooth
DataElement(int)
public DataElement(int valueType)

Creates a DataElement of type NULL, DATALT, or DATSEQ.

Parameters:
valueType - the type of DataElement to create: NULL, DATALT, or DATSEQ

Throws:
IllegalArgumentException - if valueType is not NULL, DATALT, or DATSEQ

See Also: NULL, DATALT, DATSEQ

DataElement(int, long)
public DataElement(int valueType, long value)

Creates a DataElement that encapsulates an integer value of size U_INT_1, U_INT_2, U_INT_4,
INT_1, INT_2, INT_4, and INT_8. The legal values for the valueType and the corresponding
attribute values are: 

All other pairings are illegal and will cause an IllegalArgumentException to be thrown.

Parameters:
valueType - the data type of the object that is being created; must be one of the following: 
U_INT_1, U_INT_2, U_INT_4, INT_1, INT_2, INT_4, or INT_8

value - the value of the object being created; must be in the range specified for the given 
valueType

Throws:
IllegalArgumentException - if the valueType is not valid or the value for the given legal 
valueType is outside the valid range

See Also: U_INT_1, U_INT_2, U_INT_4, INT_1, INT_2, INT_4, INT_8

DataElement(int, Object)
public DataElement(int valueType, java.lang.Object value)

Creates a DataElement whose data type is given by valueType and whose value is specified by the
argument value. The legal values for the valueType and the corresponding attribute values are: 

Value Type Value Range

U_INT_1 [0, 28-1]

U_INT_2 [0, 216-1]

U_INT_4 [0, 232-1]

INT_1 [-27, 27-1]

INT_2 [-215, 215-1]

INT_4 [-231, 231-1]

INT_8 [-263, 263-1]
12



javax.bluetooth
All other pairings are illegal and would cause an IllegalArgumentException exception.

Parameters:
valueType - the data type of the object that is being created; must be one of the following: URL, 
UUID, STRING, INT_16, U_INT_8, or U_INT_16

value - the value for the DataElement being created of type valueType

Throws:
IllegalArgumentException - if the value is not of the valueType type or is not in the 
range specified or is null

See Also: URL, UUID, STRING, U_INT_8, INT_16, U_INT_16

Methods

addElement(DataElement)
public void addElement(DataElement elem)

Adds a DataElement to this DATALT or DATSEQ DataElement object. The elem will be added at
the end of the list. The elem can be of any DataElement type, i.e., URL, NULL, BOOL, UUID, STRING,
DATSEQ, DATALT, and the various signed and unsigned integer types. The same object may be added
twice. If the object is successfully added the size of the DataElement is increased by one.

Parameters:
elem - the DataElement object to add

Throws:
ClassCastException - if the method is invoked on a DataElement whose type is not DATALT 
or DATSEQ

NullPointerException - if elem is null

getBoolean()
public boolean getBoolean()

Returns the value of the DataElement if it is represented as a boolean.

Returns: the boolean value of this DataElement object

Value Type Java Type / Value Range

URL java.lang.String 

UUID javax.bluetooth.UUID

STRING java.lang.String

INT_16 [-2127, 2127-1] as a byte array whose length must be 
16

U_INT_8 [0, 264-1] as a byte array whose length must be 8

U_INT_16 [0, 2128-1] as a byte array whose length must be 16
13



 javax.bluetooth
Throws:
ClassCastException - if the data type of this object is not of type BOOL

getDataType()
public int getDataType()

Returns the data type of the object this DataElement represents.

Returns: the data type of this DataElement object; the legal return values are:
URL, NULL, BOOL, UUID, STRING, DATSEQ, DATALT, U_INT_1, U_INT_2,
U_INT_4, U_INT_8, U_INT_16, INT_1, INT_2, INT_4, INT_8, or INT_16

getLong()
public long getLong()

Returns the value of the DataElement if it can be represented as a long. The data type of the object
must be U_INT_1, U_INT_2, U_INT_4, INT_1, INT_2, INT_4, or INT_8.

Returns: the value of the DataElement as a long

Throws:
ClassCastException - if the data type of the object is not U_INT_1, U_INT_2, U_INT_4, 
INT_1, INT_2, INT_4, or INT_8

getSize()
public int getSize()

Returns the number of DataElements that are present in this DATALT or DATSEQ object. It is possible
that the number of elements is equal to zero.

Returns: the number of elements in this DATALT or DATSEQ

Throws:
ClassCastException - if this object is not of type DATALT or DATSEQ

getValue()
public java.lang.Object getValue()

Returns the value of this DataElement as an Object. This method returns the appropriate Java object
for the following data types: URL, UUID, STRING, DATSEQ, DATALT, U_INT_8, U_INT_16, and
INT_16. Modifying the returned Object will not change this DataElement. The following are the
legal pairs of data type and Java object type being returned. 

DataElement Data Type Java Data Type

URL java.lang.String 

UUID javax.bluetooth.UUID

STRING java.lang.String

DATSEQ java.util.Enumeration

DATALT java.util.Enumeration
14



javax.bluetooth
Returns: the value of this object

Throws:
ClassCastException - if the object is not a URL, UUID, STRING, DATSEQ, DATALT, 
U_INT_8, U_INT_16, or INT_16

insertElementAt(DataElement, int)
public void insertElementAt(DataElement elem, int index)

Inserts a DataElement at the specified location. This method can be invoked only on a DATALT or
DATSEQ DataElement. elem can be of any DataElement type, i.e., URL, NULL, BOOL, UUID,
STRING, DATSEQ, DATALT, and the various signed and unsigned integers. The same object may be added
twice. If the object is successfully added the size will be increased by one. Each element with an index
greater than or equal to the specified index is shifted upward to have an index one greater than the value it
had previously. 

The index must be greater than or equal to 0 and less than or equal to the current size. Therefore, DATALT
and DATSEQ are zero-based objects.

Parameters:
elem - the DataElement object to add

index - the location at which to add the DataElement

Throws:
ClassCastException - if the method is invoked on an instance of DataElement whose type is 
not DATALT or DATSEQ

IndexOutOfBoundsException - if index is negative or greater than the size of the DATALT or 
DATSEQ

NullPointerException - if elem is null

removeElement(DataElement)
public boolean removeElement(DataElement elem)

Removes the first occurrence of the DataElement from this object. elem may be of any type, i.e., URL,
NULL, BOOL, UUID, STRING, DATSEQ, DATALT, or the variously sized signed and unsigned integers.
Only the first object in the list that is equal to elem will be removed. Other objects, if present, are not
removed. Since this class doesnt override the equals() method of the Object class, the remove method
compares only the references of objects. If elem is successfully removed the size of this DataElement
is decreased by one. Each DataElement in the DATALT or DATSEQ with an index greater than the index
of elem is shifted downward to have an index one smaller than the value it had previously.

Parameters:
elem - the DataElement to be removed

Returns: true if the input value was found and removed; else false

Throws:
ClassCastException - if this object is not of type DATALT or DATSEQ

U_INT_8 byte[] of length 8

U_INT_16 byte[] of length 16

INT_16 byte[] of length 16
15



 javax.bluetooth
NullPointerException - if elem is null
16



javax.bluetooth
javax.bluetooth
DeviceClass
Declaration
public class DeviceClass

java.lang.Object
|
+--javax.bluetooth.DeviceClass

Description
The DeviceClass class represents the class of device (CoD) record as defined by the Bluetooth 
specification. This record is defined in the Bluetooth Assigned Numbers document and contains information on 
the type of the device and the type of services available on the device.  

The Bluetooth Assigned Numbers document (http://www.bluetooth.org/assigned-numbers/baseband.htm) 
defines the service class, major device class, and minor device class. The table below provides some examples 
of possible return values and their meaning: 

Method Return Value Class of Device

getServiceClasses() 0x22000 Networking and Limited Discoverable Major Service 
Classes

getServiceClasses() 0x100000 Object Transfer Major Service Class

getMajorDeviceClass() 0x00 Miscellaneous Major Device Class

getMajorDeviceClass() 0x200 Phone Major Device Class

getMinorDeviceClass() 0x0C With a Computer Major Device Class, Laptop Minor 
Device Class

getMinorDeviceClass() 0x04 With a Phone Major Device Class, Cellular Minor 
Device Class

Member Summary
Constructors

public DeviceClass(int)
Creates a DeviceClass from the class of device record provided.

Methods
public int getMajorDeviceClass()

Retrieves the major device class.
public int getMinorDeviceClass()

Retrieves the minor device class.
public int getServiceClasses()

Retrieves the major service classes.
17



 javax.bluetooth
Constructors

DeviceClass(int)
public DeviceClass(int record)

Creates a DeviceClass from the class of device record provided. record must follow the format of the
class of device record in the Bluetooth specification.

Parameters:
record - describes the classes of a device

Throws:
IllegalArgumentException - if record has any bits between 24 and 31 set

Methods

getMajorDeviceClass()
public int getMajorDeviceClass()

Retrieves the major device class. A device may have only a single major device class.

Returns: the major device class

getMinorDeviceClass()
public int getMinorDeviceClass()

Retrieves the minor device class.

Returns: the minor device class

getServiceClasses()
public int getServiceClasses()

Retrieves the major service classes. A device may have multiple major service classes. When this occurs,
the major service classes are bitwise OR’ed together.

Returns: the major service classes

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
18



javax.bluetooth
javax.bluetooth
DiscoveryAgent
Declaration
public class DiscoveryAgent

java.lang.Object
|
+--javax.bluetooth.DiscoveryAgent

Description
The DiscoveryAgent class provides methods to perform device and service discovery. A local device must 
have only one DiscoveryAgent object. This object must be retrieved by a call to 
getDiscoveryAgent() on the LocalDevice object. 

Device Discovery
There are two ways to discover devices. First, an application may use startInquiry() to start an inquiry to 
find devices in proximity to the local device. Discovered devices are returned via the 
deviceDiscovered() method of the interface DiscoveryListener. The second way to discover 
devices is via the retrieveDevices() method. This method will return devices that have been discovered 
via a previous inquiry or devices that are classified as pre-known. (Pre-known devices are those devices that are 
defined in the Bluetooth Control Center as devices this device frequently contacts.) The 
retrieveDevices() method does not perform an inquiry, but provides a quick way to get a list of devices 
that may be in the area. 

Service Discovery
The DiscoveryAgent class also encapsulates the functionality provided by the service discovery application 
profile. The class provides an interface for an application to search and retrieve attributes for a particular 
service. There are two ways to search for services. To search for a service on a single device, the 
searchServices() method should be used. On the other hand, if you don’t care which device a service is 
on, the selectService() method does a service search on a set of remote devices.

Member Summary
Fields

public static final CACHED
Used with the retrieveDevices() method to return those devices that were 
found via a previous inquiry.

public static final GIAC
The inquiry access code for General/Unlimited Inquiry Access Code (GIAC).

public static final LIAC
The inquiry access code for Limited Dedicated Inquiry Access Code (LIAC).

public static final NOT_DISCOVERABLE
Takes the device out of discoverable mode.

public static final PREKNOWN
Used with the retrieveDevices() method to return those devices that are 
defined to be pre-known devices.

Methods
19



 javax.bluetooth
Fields

CACHED
public static final int CACHED

Used with the retrieveDevices() method to return those devices that were found via a previous
inquiry. If no inquiries have been started, this will cause the method to return null. 

The value of CACHED is 0x00 (0).

See Also: retrieveDevices(int)

GIAC
public static final int GIAC

The inquiry access code for General/Unlimited Inquiry Access Code (GIAC). This is used to specify the
type of inquiry to complete or respond to. 

The value of GIAC is 0x9E8B33 (10390323). This value is defined in the Bluetooth Assigned Numbers
document.

LIAC
public static final int LIAC

public boolean cancelInquiry(DiscoveryListener)
Removes the device from inquiry mode.

public boolean cancelServiceSearch(int)
Cancels the service search transaction that has the specified transaction ID.

public RemoteDevice retrieveDevices(int)
Returns an array of Bluetooth devices that have either been found by the local device 
during previous inquiry requests or been specified as a pre-known device depending 
on the argument.

public int searchServices(int[], UUID[], RemoteDevice, DiscoveryLis-
tener)

Searches for services on a remote Bluetooth device that have all the UUIDs specified 
in uuidSet.

public String selectService(UUID, int, boolean)
Attempts to locate a service that contains uuid in the ServiceClassIDList of its ser-
vice record.

public boolean startInquiry(int, DiscoveryListener)
Places the device into inquiry mode.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Member Summary
20



javax.bluetooth
The inquiry access code for Limited Dedicated Inquiry Access Code (LIAC). This is used to specify the
type of inquiry to complete or respond to. 

The value of LIAC is 0x9E8B00 (10390272). This value is defined in the Bluetooth Assigned Numbers
document.

NOT_DISCOVERABLE
public static final int NOT_DISCOVERABLE

Takes the device out of discoverable mode. 

The value of NOT_DISCOVERABLE is 0x00 (0).

PREKNOWN
public static final int PREKNOWN

Used with the retrieveDevices() method to return those devices that are defined to be pre-known
devices. Pre-known devices are specified in the BCC. These are devices that are specified by the user as
devices with which the local device will frequently communicate. 

The value of PREKNOWN is 0x01 (1).

See Also: retrieveDevices(int)

Methods

cancelInquiry(DiscoveryListener)
public boolean cancelInquiry(DiscoveryListener listener)

Removes the device from inquiry mode. 

An inquiryCompleted() event will occur with a type of INQUIRY_TERMINATED as a result of call-
ing this method. After receiving this event, no further deviceDiscovered() events will occur as a
result of this inquiry. 

This method will only cancel the inquiry if the listener provided is the listener that started the inquiry.

Parameters:
listener - the listener that is receiving inquiry events

Returns: true if the inquiry was canceled; otherwise false if the inquiry was not canceled or if the 
inquiry was not started using listener

Throws:
NullPointerException - if listener is null

cancelServiceSearch(int)
public boolean cancelServiceSearch(int transID)

Cancels the service search transaction that has the specified transaction ID. The ID was assigned to the
transaction by the method searchServices(). A serviceSearchCompleted() event with a dis-
covery type of SERVICE_SEARCH_TERMINATED will occur when this method is called. After receiving
this event, no further servicesDiscovered() events will occur as a result of this search.
21



 javax.bluetooth
Parameters:
transID - the ID of the service search transaction to cancel; returned by searchServices()

Returns: true if the service search transaction is terminated, else false if the transID does not 
represent an active service search transaction

retrieveDevices(int)
public RemoteDevice[] retrieveDevices(int option)

Returns an array of Bluetooth devices that have either been found by the local device during previous
inquiry requests or been specified as a pre-known device depending on the argument. The list of previously
found devices is maintained by the implementation of this API. (In other words, maintenance of the list of
previously found devices is an implementation detail.) A device can be set as a pre-known device in the
Bluetooth Control Center.

Parameters:
option - CACHED if previously found devices should be returned; PREKNOWN if pre-known devices 
should be returned

Returns: an array containing the Bluetooth devices that were previously found if option is CACHED; an 
array of devices that are pre-known devices if option is PREKNOWN; null if no devices meet the 
criteria

Throws:
IllegalArgumentException - if option is not CACHED or PREKNOWN

searchServices(int[], UUID[], RemoteDevice, DiscoveryListener)
public int searchServices(int[] attrSet, UUID[] uuidSet, RemoteDevice btDev,

DiscoveryListener discListener)

throws BluetoothStateException

Searches for services on a remote Bluetooth device that have all the UUIDs specified in uuidSet. Once
the service is found, the attributes specified in attrSet and the default attributes are retrieved. The
default attributes are ServiceRecordHandle (0x0000), ServiceClassIDList (0x0001), ServiceRecordState
(0x0002), ServiceID (0x0003), and ProtocolDescriptorList (0x0004).If attrSet is null then only the
default attributes will be retrieved. attrSet does not have to be sorted in increasing order, but must only
contain values in the range [0 - (216-1)].

Parameters:
attrSet - indicates the attributes whose values will be retrieved on services which have the UUIDs 
specified in uuidSet

uuidSet - the set of UUIDs that are being searched for; all services returned will contain all the 
UUIDs specified here

btDev - the remote Bluetooth device to search for services on

discListener - the object that will receive events when services are discovered

Returns: the transaction ID of the service search; this number must be positive

Throws:
BluetoothStateException - if the number of concurrent service search transactions exceeds 
the limit specified by the bluetooth.sd.trans.max property obtained from the class 
LocalDevice or the system is unable to start one due to current conditions
22



javax.bluetooth
IllegalArgumentException - if attrSet has an illegal service attribute ID or exceeds the 
property bluetooth.sd.attr.retrievable.max defined in the class LocalDevice; if 
attrSet or uuidSet is of length 0; if attrSet or uuidSet contains duplicates

NullPointerException - if uuidSet, btDev, or discListener is null; if an element in 
uuidSet array is null

See Also: DiscoveryListener

selectService(UUID, int, boolean)
public java.lang.String selectService(UUID uuid, int security, boolean master)

throws BluetoothStateException

Attempts to locate a service that contains uuid in the ServiceClassIDList of its service record. This
method will return a string that may be used in Connector.open() to establish a connection to the ser-
vice. How the service is selected if there are multiple services with uuid and which devices to search is
implementation dependent.

Parameters:
uuid - the UUID to search for in the ServiceClassIDList

security - specifies the security requirements for a connection to this service; must be one of 
ServiceRecord.NOAUTHENTICATE_NOENCRYPT, 
ServiceRecord.AUTHENTICATE_NOENCRYPT, or 
ServiceRecord.AUTHENTICATE_ENCRYPT

master - determines if this client must be the master of the connection; true if the client must be the 
master; false if the client can be the master or the slave

Returns: the connection string used to connect to the service with a UUID of uuid; or null if no service 
could be found with a UUID of uuid in the ServiceClassIDList

Throws:
BluetoothStateException - if the Bluetooth system cannot start the request due to the current 
state of the Bluetooth system

NullPointerException - if uuid is null

IllegalArgumentException - if security is not 
ServiceRecord.NOAUTHENTICATE_NOENCRYPT, 
ServiceRecord.AUTHENTICATE_NOENCRYPT, or 
ServiceRecord.AUTHENTICATE_ENCRYPT

See Also: NOAUTHENTICATE_NOENCRYPT, AUTHENTICATE_NOENCRYPT, 
AUTHENTICATE_ENCRYPT

startInquiry(int, DiscoveryListener)
public boolean startInquiry(int accessCode, DiscoveryListener listener)

throws BluetoothStateException

Places the device into inquiry mode. The length of the inquiry is implementation dependent. This method
will search for devices with the specified inquiry access code. Devices that responded to the inquiry are
returned to the application via the method deviceDiscovered() of the interface Discovery-
Listener. The cancelInquiry() method is called to stop the inquiry.

Parameters:
accessCode - the type of inquiry to complete
23



 javax.bluetooth
listener - the event listener that will receive device discovery events

Returns: true if the inquiry was started; false if the inquiry was not started because the 
accessCode is not supported

Throws:
IllegalArgumentException - if the access code provided is not LIAC, GIAC, or in the range 
0x9E8B00 to 0x9E8B3F

NullPointerException - if listener is null

BluetoothStateException - if the Bluetooth device does not allow an inquiry to be started due 
to other operations that are being performed by the device

See Also: cancelInquiry(DiscoveryListener), GIAC, LIAC
24



javax.bluetooth
javax.bluetooth
DiscoveryListener
Declaration
public interface DiscoveryListener

Description
The DiscoveryListener interface allows an application to receive device discovery and service discovery 
events. This interface provides four methods, two for discovering devices and two for discovering services.

Fields

INQUIRY_COMPLETED
public static final int INQUIRY_COMPLETED

Member Summary
Fields

public static final INQUIRY_COMPLETED
Indicates the normal completion of device discovery.

public static final INQUIRY_ERROR
Indicates that the inquiry request failed to complete normally, but was not cancelled.

public static final INQUIRY_TERMINATED
Indicates device discovery has been canceled by the application and did not complete.

public static final SERVICE_SEARCH_COMPLETED
Indicates the normal completion of service discovery.

public static final SERVICE_SEARCH_DEVICE_NOT_REACHABLE
Indicates the service search could not be completed because the remote device pro-
vided to DiscoveryAgent.searchServices() could not be reached.

public static final SERVICE_SEARCH_ERROR
Indicates the service search terminated with an error.

public static final SERVICE_SEARCH_NO_RECORDS
Indicates the service search has completed with no service records found on the 
device.

public static final SERVICE_SEARCH_TERMINATED
Indicates the service search has been canceled by the application and did not com-
plete.

Methods
public void deviceDiscovered(RemoteDevice, DeviceClass)

Called when a device is found during an inquiry.
public void inquiryCompleted(int)

Called when an inquiry is completed.
public void servicesDiscovered(int, ServiceRecord[])

Called when service(s) are found during a service search.
public void serviceSearchCompleted(int, int)

Called when a service search is completed or was terminated because of an error.
25



 javax.bluetooth
Indicates the normal completion of device discovery. Used with the inquiryCompleted() method. 

The value of INQUIRY_COMPLETED is 0x00 (0).

See Also: inquiryCompleted(int), startInquiry(int, DiscoveryListener)

INQUIRY_ERROR
public static final int INQUIRY_ERROR

Indicates that the inquiry request failed to complete normally, but was not cancelled. 

The value of INQUIRY_ERROR is 0x07 (7).

See Also: inquiryCompleted(int), startInquiry(int, DiscoveryListener)

INQUIRY_TERMINATED
public static final int INQUIRY_TERMINATED

Indicates device discovery has been canceled by the application and did not complete. Used with the
inquiryCompleted() method. 

The value of INQUIRY_TERMINATED is 0x05 (5).

See Also: inquiryCompleted(int), startInquiry(int, DiscoveryListener), 
cancelInquiry(DiscoveryListener)

SERVICE_SEARCH_COMPLETED
public static final int SERVICE_SEARCH_COMPLETED

Indicates the normal completion of service discovery. Used with the serviceSearchCompleted()
method. 

The value of SERVICE_SEARCH_COMPLETED is 0x01 (1).

See Also: serviceSearchCompleted(int, int), searchServices(int[], UUID[],
RemoteDevice, DiscoveryListener)

SERVICE_SEARCH_DEVICE_NOT_REACHABLE
public static final int SERVICE_SEARCH_DEVICE_NOT_REACHABLE

Indicates the service search could not be completed because the remote device provided to Discovery-
Agent.searchServices() could not be reached. Used with the serviceSearchCompleted()
method. 

The value of SERVICE_SEARCH_DEVICE_NOT_REACHABLE is 0x06 (6).

See Also: serviceSearchCompleted(int, int), searchServices(int[], UUID[],
RemoteDevice, DiscoveryListener)

SERVICE_SEARCH_ERROR
public static final int SERVICE_SEARCH_ERROR

Indicates the service search terminated with an error.  Used with the serviceSearchCompleted()
method. 

The value of SERVICE_SEARCH_ERROR is 0x03 (3).
26



javax.bluetooth
See Also: serviceSearchCompleted(int, int), searchServices(int[], UUID[],
RemoteDevice, DiscoveryListener)

SERVICE_SEARCH_NO_RECORDS
public static final int SERVICE_SEARCH_NO_RECORDS

Indicates the service search has completed with no service records found on the device. Used with the
serviceSearchCompleted() method. 

The value of SERVICE_SEARCH_NO_RECORDS is 0x04 (4).

See Also: serviceSearchCompleted(int, int), searchServices(int[], UUID[],
RemoteDevice, DiscoveryListener)

SERVICE_SEARCH_TERMINATED
public static final int SERVICE_SEARCH_TERMINATED

Indicates the service search has been canceled by the application and did not complete. Used with the
serviceSearchCompleted() method. 

The value of SERVICE_SEARCH_TERMINATED is 0x02 (2).

See Also: serviceSearchCompleted(int, int), searchServices(int[], UUID[],
RemoteDevice, DiscoveryListener), cancelServiceSearch(int)

Methods

deviceDiscovered(RemoteDevice, DeviceClass)
public void deviceDiscovered(RemoteDevice btDevice, DeviceClass cod)

Called when a device is found during an inquiry. An inquiry searches for devices that are discoverable. The
same device may be returned multiple times.

Parameters:
btDevice - the device that was found during the inquiry

cod - the service classes, major device class, and minor device class of the remote device

See Also: startInquiry(int, DiscoveryListener)

inquiryCompleted(int)
public void inquiryCompleted(int discType)

Called when an inquiry is completed. The discType will be INQUIRY_COMPLETED if the inquiry
ended normally or INQUIRY_TERMINATED if the inquiry was canceled by a call to Discovery-
Agent.cancelInquiry(). The discType will be INQUIRY_ERROR if an error occurred while pro-
cessing the inquiry causing the inquiry to end abnormally.

Parameters:
discType - the type of request that was completed; either INQUIRY_COMPLETED, 
INQUIRY_TERMINATED, or INQUIRY_ERROR

See Also: INQUIRY_COMPLETED, INQUIRY_TERMINATED, INQUIRY_ERROR
27



 javax.bluetooth
servicesDiscovered(int, ServiceRecord[])
public void servicesDiscovered(int transID, ServiceRecord[] servRecord)

Called when service(s) are found during a service search.

Parameters:
transID - the transaction ID of the service search that is posting the result

service - a list of services found during the search request

See Also: searchServices(int[], UUID[], RemoteDevice, DiscoveryListener)

serviceSearchCompleted(int, int)
public void serviceSearchCompleted(int transID, int respCode)

Called when a service search is completed or was terminated because of an error. Legal status values in the
respCode argument include SERVICE_SEARCH_COMPLETED, SERVICE_SEARCH_TERMINATED,
SERVICE_SEARCH_ERROR, SERVICE_SEARCH_NO_RECORDS and
SERVICE_SEARCH_DEVICE_NOT_REACHABLE. The following table describes when each respCode
will be used: 

Parameters:
transID - the transaction ID identifying the request which initiated the service search

respCode - the response code that indicates the status of the transaction

respCode Reason

SERVICE_SEARCH_COMPLETED if the service search completed normally

SERVICE_SEARCH_TERMINATED if the service search request was cancelled by a call to 
DiscoveryAgent.cancelService-
Search()

SERVICE_SEARCH_ERROR if an error occurred while processing the request

SERVICE_SEARCH_NO_RECORDS if no records were found during the service search

SERVICE_SEARCH_DEVICE_NOT_REACHABLE if the device specified in the search request could not 
be reached or the local device could not establish a 
connection to the remote device
28



javax.bluetooth
javax.bluetooth
L2CAPConnection
Declaration
public interface L2CAPConnection extends javax.microedition.io.Connection

All Superinterfaces: javax.microedition.io.Connection

Description
The L2CAPConnection interface represents a connection-oriented L2CAP channel. This interface is to be 
used as part of the CLDC Generic Connection Framework. 

To create a client connection, the protocol is btl2cap. The target is the combination of the address of the 
Bluetooth device to connect to and the Protocol Service Multiplexor (PSM) of the service. The PSM value is 
used by the L2CAP to determine which higher level protocol or application is the recipient of the messages the 
layer receives. 
The parameters defined specific to L2CAP are ReceiveMTU (Maximum Transmission Unit (MTU)) and 
TransmitMTU. The ReceiveMTU and TransmitMTU parameters are optional. ReceiveMTU specifies the 
maximum payload size this connection can accept, and TransmitMTU specifies the maximum payload size this 
connection can send. An example of a valid L2CAP client connection string is:
 btl2cap://0050CD00321B:1003;ReceiveMTU=512;TransmitMTU=512

Member Summary
Fields

public static final DEFAULT_MTU
Default MTU value for connection-oriented channels is 672 bytes.

public static final MINIMUM_MTU
Minimum MTU value for connection-oriented channels is 48 bytes.

Methods
public int getReceiveMTU()

Returns the ReceiveMTU that the connection supports.
public int getTransmitMTU()

Returns the MTU that the remote device supports.
public boolean ready()

Determines if there is a packet that can be read via a call to receive().
public int receive(byte[])

Reads a packet of data.
public void send(byte[])

Requests that data be sent to the remote device.
29



 javax.bluetooth
Fields

DEFAULT_MTU
public static final int DEFAULT_MTU

Default MTU value for connection-oriented channels is 672 bytes. 

The value of DEFAULT_MTU is 0x02A0 (672).

MINIMUM_MTU
public static final int MINIMUM_MTU

Minimum MTU value for connection-oriented channels is 48 bytes. 

The value of MINIMUM_MTU is 0x30 (48).

Methods

getReceiveMTU()
public int getReceiveMTU()

throws IOException

Returns the ReceiveMTU that the connection supports. If the connection string did not specify a Receive-
MTU, the value returned will be less than or equal to the DEFAULT_MTU. Also, if the connection string did
specify an MTU, this value will be less than or equal to the value specified in the connection string.

Returns: the maximum number of bytes that can be read in a single call to receive()

Throws:
IOException - if the connection is closed

getTransmitMTU()
public int getTransmitMTU()

throws IOException

Returns the MTU that the remote device supports. This value is obtained after the connection has been con-
figured. If the application had specified TransmitMTU in the Connector.open() string then this value
should be equal to that. If the application did not specify any TransmitMTU, then this value should be less
than or equal to the ReceiveMTU the remote device advertised during channel configuration.

Returns: the maximum number of bytes that can be sent in a single call to send() without losing any 
data

Throws:
IOException - if the connection is closed

Inherited Member Summary

Methods inherited from interface javax.microedition.io.Connection

close
30



javax.bluetooth
ready()
public boolean ready()

throws IOException

Determines if there is a packet that can be read via a call to receive(). If true, a call to receive()
will not block the application.

Returns: true if there is data to read; false if there is no data to read

Throws:
IOException - if the connection is closed

See Also: receive(byte[])

receive(byte[])
public int receive(byte[] inBuf)

throws IOException

Reads a packet of data. The amount of data received in  this operation is related to the value of Receive-
MTU. If the size of inBuf is greater than or equal to ReceiveMTU, then no data will be lost. Unlike
read() on an java.io.InputStream, if the size of inBuf is smaller than ReceiveMTU, then the
portion of the L2CAP payload that will fit into inBuf will be placed in inBuf, the rest will be discarded.
If the application is aware of the number of bytes (less than ReceiveMTU) it will receive in any transaction,
then the size of inBuf can be less than ReceiveMTU and no data will be lost. If inBuf is of length 0, all
data sent in one packet is lost unless the length of the packet is 0.

Parameters:
inBuf - byte array to store the received data

Returns: the actual number of bytes read; 0 if a zero length packet is received; 0 if inBuf length is zero

Throws:
IOException - if an I/O error occurs or the connection has been closed

InterruptedIOException - if the request timed out

NullPointerException - if inBuf is null

send(byte[])
public void send(byte[] data)

throws IOException

Requests that data be sent to the remote device. The TransmitMTU determines the amount of data that can
be successfully sent in a single send operation. If the size of data is greater than the TransmitMTU, then
only the first TransmitMTU bytes of the packet are sent, and the rest will be discarded. If data is of length
0, an empty L2CAP packet will be sent.

Parameters:
data - data to be sent

Throws:
IOException - if data cannot be sent successfully or if the connection is closed

NullPointerException - if the data is null
31



 javax.bluetooth
javax.bluetooth
L2CAPConnectionNotifier
Declaration
public interface L2CAPConnectionNotifier extends javax.microedition.io.Connection

All Superinterfaces: javax.microedition.io.Connection

Description
The L2CAPConnectionNotifier interface provides an L2CAP connection notifier. 

To create a server connection, the protocol must be btl2cap. The target contains “localhost:” and the UUID 
of the  service. The parameters are ReceiveMTU and TransmitMTU, the same parameters used to define a client 
connection. Here is an example of a valid server connection string:
 btl2cap://
localhost:3B9FA89520078C303355AAA694238F07;ReceiveMTU=512;TransmitMTU=512
 
A call to Connector.open() with this string will return a 
javax.bluetooth.L2CAPConnectionNotifier object. An L2CAPConnection object is obtained 
from the L2CAPConnectionNotifier by calling the method acceptAndOpen().

Methods

acceptAndOpen()
public L2CAPConnection acceptAndOpen()

throws IOException

Waits for a client to connect to this L2CAP service. Upon connection returns an L2CAPConnection that
can be used to communicate with this client. 

Member Summary
Methods

public
L2CAPConnection

acceptAndOpen()
Waits for a client to connect to this L2CAP service.

Inherited Member Summary

Methods inherited from interface javax.microedition.io.Connection

close
32



javax.bluetooth
A service record associated with this connection will be added to the SDDB associated with this
L2CAPConnectionNotifier object if one does not exist in the SDDB. This method will put the local
device in connectable mode so that it may respond to connection attempts by clients. 

The following checks are done to verify that any modifications made by the application to the service
record after it was created by Connector.open() have not created an invalid service record. If any of
these checks fail, then a ServiceRegistrationException is thrown. 

• ServiceClassIDList and ProtocolDescriptorList, the mandatory service attributes for a btl2cap ser-
vice record, must be present in the service record. 

• L2CAP must be in the ProtocolDescriptorList. 

• The PSM value must not have changed in the service record. 

This method will not ensure that the service record created is a completely valid service record. It is the
responsibility of the application to ensure that the service record follows all of the applicable syntactic and
semantic rules for service record correctness.

Returns: a connection to communicate with the client

Throws:
IOException - if the notifier is closed before acceptAndOpen() is called

ServiceRegistrationException - if the structure of the associated service record is invalid or 
if the service record could not be added successfully to the local SDDB. The structure of service record 
is invalid if the service record is missing any mandatory service attributes, or has changed any of the 
values described above which are fixed and cannot be changed. Failures to add the record to the SDDB 
could be due to insufficient disk space, database locks, etc.

BluetoothStateException - if the server device could not be placed in connectable mode 
because the device user has configured the device to be non-connectable.
33



 javax.bluetooth
javax.bluetooth
LocalDevice
Declaration
public class LocalDevice

java.lang.Object
|
+--javax.bluetooth.LocalDevice

Description
The LocalDevice class defines the basic functions of the Bluetooth manager. The Bluetooth manager 
provides the lowest level of interface possible into the Bluetooth stack. It provides access to and control of the 
local Bluetooth device. 

This class produces a singleton object.

Member Summary
Methods

public String getBluetoothAddress()
Retrieves the Bluetooth address of the local device.

public DeviceClass getDeviceClass()
Retrieves the DeviceClass object that represents the service classes, major device 
class, and minor device class of the local device.

public int getDiscoverable()
Retrieves the local device’s discoverable mode.

public DiscoveryAgent getDiscoveryAgent()
Returns the discovery agent for this device.

public String getFriendlyName()
Retrieves the name of the local device.

public static LocalDe-
vice

getLocalDevice()
Retrieves the LocalDevice object for the local Bluetooth device.

public static String getProperty(String)
Retrieves Bluetooth system properties.

public ServiceRecord getRecord(Connection)
Gets the service record corresponding to a btspp, btl2cap, or btgoep notifier.

public boolean setDiscoverable(int)
Sets the discoverable mode of the device.

public void updateRecord(ServiceRecord)
Updates the service record in the local SDDB that corresponds to the Service-
Record parameter.

Inherited Member Summary

Methods inherited from class java.lang.Object
34



javax.bluetooth
Methods

getBluetoothAddress()
public java.lang.String getBluetoothAddress()

Retrieves the Bluetooth address of the local device. The Bluetooth address will never be null. The Blue-
tooth address will be 12 characters long. Valid characters are 0-9 and A-F.

Returns: the Bluetooth address of the local device

getDeviceClass()
public DeviceClass getDeviceClass()

Retrieves the DeviceClass object that represents the service classes, major device class, and minor
device class of the local device. This method will return null if the service classes, major device class, or
minor device class could not be determined.

Returns: the service classes, major device class, and minor device class of the local device, or null if the 
service classes, major device class or minor device class could not be determined

getDiscoverable()
public int getDiscoverable()

Retrieves the local device’s discoverable mode. The return value will be DiscoveryAgent.GIAC,
DiscoveryAgent.LIAC, DiscoveryAgent.NOT_DISCOVERABLE, or a value in the range
0x9E8B00 to 0x9E8B3F.

Returns: the discoverable mode the device is presently in

See Also: GIAC, LIAC, NOT_DISCOVERABLE

getDiscoveryAgent()
public DiscoveryAgent getDiscoveryAgent()

Returns the discovery agent for this device. Multiple calls to this method will return the same object. This
method will never return null.

Returns: the discovery agent for the local device

getFriendlyName()
public java.lang.String getFriendlyName()

Retrieves the name of the local device. The Bluetooth specification calls this name the “Bluetooth device
name” or the “user-friendly name”.

Returns: the name of the local device; null if the name could not be retrieved

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Inherited Member Summary
35



 javax.bluetooth
getLocalDevice()
public static LocalDevice getLocalDevice()

throws BluetoothStateException

Retrieves the LocalDevice object for the local Bluetooth device. Multiple calls to this method will
return the same object. This method will never return null.

Returns: an object that represents the local Bluetooth device

Throws:
BluetoothStateException - if the Bluetooth system could not be initialized

getProperty(String)
public static java.lang.String getProperty(java.lang.String property)

Retrieves Bluetooth system properties. The following properties must be supported, but additional values
are allowed: 

Parameters:
property - the property to retrieve as defined in this class.

Returns: the value of the property specified; null if the property is not defined

Property Name Description

bluetooth.api.version The version of the Java API for Bluetooth wireless technology that is sup-
ported. For this version it will be set to “1.0”.

bluetooth.master.switch Is master/slave switch allowed? Valid values are either “true” or “false”.

bluetooth.sd.attr.retrievable.max Maximum number of service attributes to be retrieved per service record. 
The string will be in Base 10 digits.

bluetooth.connected.devices.max The maximum number of connected devices supported. This number may 
be greater than 7 if the implementation handles parked connections. The 
string will be in Base 10 digits. 

bluetooth.l2cap.receiveMTU.max The maximum ReceiveMTU size in bytes supported in L2CAP. The string 
will be in Base 10 digits, e.g. “32”.

bluetooth.sd.trans.max Maximum number of concurrent service discovery transactions. The string 
will be in Base 10 digits. 

bluetooth.connected.inquiry.scan Is Inquiry scanning allowed during connection? Valid values are either 
“true” or “false”.

bluetooth.connected.page.scan Is Page scanning allowed during connection? Valid values are either “true” 
or “false”.

bluetooth.connected.inquiry Is Inquiry allowed during a connection? Valid values are either “true” or 
“false”.

bluetooth.connected.page Is paging allowed during a connection? In other words, can a connection be 
established to one device if it is already connected to another device. Valid 
values are either “true” or “false”.
36



javax.bluetooth
getRecord(Connection)
public ServiceRecord getRecord(javax.microedition.io.Connection notifier)

Gets the service record corresponding to a btspp, btl2cap, or btgoep notifier. In the case of a run-
before-connect service, the service record returned by getRecord() was created by the same call to
Connector.open() that created the notifier. 

If a connect-anytime server application does not already have a service record in the SDDB, either because
a service record for this service was never added to the SDDB or because the service record was added and
then removed, then the ServiceRecord returned by getRecord() was created by the same call to
Connector.open() that created the notifier. 

In the case of a connect-anytime service, there may be a service record in the SDDB corresponding to this
service prior to application startup. In this case, the getRecord() method must return a Service-
Record whose contents match those of the corresponding service record in the SDDB. If a connect-any-
time server application made changes previously to its service record in the SDDB (for example, during a
previous execution of the server), and that service record is still in the SDDB, then those changes must be
reflected in the ServiceRecord returned by getRecord(). 

Two invocations of this method with the same notifier argument return objects that describe the same
service attributes, but the return values may be different object references.

Parameters:
notifier - a connection that waits for clients to connect to a Bluetooth service

Returns: the ServiceRecord associated with notifier

Throws:
IllegalArgumentException - if notifier is closed, or if notifier does not implement 
one of the following interfaces: javax.microedition.io.StreamConnectionNotifier, 
javax.bluetooth.L2CapConnectionNotifier, or javax.obex.SessionNotifier. 
This exception is also thrown if notifier is not a Bluetooth notifier, e.g., a 
StreamConnectionNotifier created with a scheme other than btspp.

NullPointerException - if notifier is null

setDiscoverable(int)
public boolean setDiscoverable(int mode)

throws BluetoothStateException

Sets the discoverable mode of the device. The mode may be any number in the range 0x9E8B00 to
0x9E8B3F as defined by the Bluetooth Assigned Numbers Document. When this specification was defined,
only GIAC (DiscoveryAgent.GIAC) and LIAC (DiscoveryAgent.LIAC) were defined, but Blue-
tooth profiles may add additional access codes in the future. To determine what values may be used, check
the Bluetooth Assigned Numbers document at http://www.bluetooth.org/assigned-numbers/baseband.htm.
If DiscoveryAgent.GIAC or DiscoveryAgent.LIAC are provided, then this method will attempt
to put the device into general or limited discoverable mode, respectively. To take a device out of discover-
able mode, provide the DiscoveryAgent.NOT_DISCOVERABLE flag. The BCC decides if the request
will be granted.  In addition to the BCC, the Bluetooth system could effect the discoverability of a device. 

According to the Bluetooth Specification, a device should only be limited discoverable (Discovery-
Agent.LIAC) for 1 minute. This is handled by the implementation of the API. After the minute is up, the
device will revert back to the previous discoverable mode.
37



 javax.bluetooth
Parameters:
mode - the mode the device should be in; valid modes are DiscoveryAgent.GIAC, 
DiscoveryAgent.LIAC, DiscoveryAgent.NOT_DISCOVERABLE and any value in the range 
0x9E8B00 to 0x9E8B3F

Returns: true if the request succeeded, otherwise false if the request failed because the BCC denied 
the request; false if the Bluetooth system does not support the access mode specified in mode

Throws:
IllegalArgumentException - if the mode is not DiscoveryAgent.GIAC, 
DiscoveryAgent.LIAC, DiscoveryAgent.NOT_DISCOVERABLE, or in the range 
0x9E8B00 to 0x9E8B3F

BluetoothStateException - if the Bluetooth system is in a state that does not allow the 
discoverable mode to be changed

See Also: GIAC, LIAC, NOT_DISCOVERABLE

updateRecord(ServiceRecord)
public void updateRecord(ServiceRecord srvRecord)

throws ServiceRegistrationException

Updates the service record in the local SDDB that corresponds to the ServiceRecord parameter. Updat-
ing is possible only if srvRecord was obtained using the getRecord() method. The service record in
the SDDB is modified to have the same service attributes with the same contents as srvRecord. 

If srvRecord was obtained from the SDDB of a remote device using the service search methods, updat-
ing is not possible and this method will throw an IllegalArgumentException. 

If the srvRecord parameter is a btspp service record, then before the SDDB is changed the following
checks are performed. If any of these checks fail, then an IllegalArgumentException is thrown. 

• ServiceClassIDList and ProtocolDescriptorList, the mandatory service attributes for a btspp service
record, must be present in srvRecord. 

• L2CAP and RFCOMM must be in the ProtocolDescriptorList. 

• srvRecord must not have changed the RFCOMM server channel number from the channel number
that is currently in the SDDB version of this service record. 

If the srvRecord parameter is a btl2cap service record, then before the SDDB is changed the follow-
ing checks are performed. If any of these checks fail, then an IllegalArgumentException is
thrown. 

• ServiceClassIDList and ProtocolDescriptorList, the mandatory service attributes for a btl2cap ser-
vice record, must be present in srvRecord. 

• L2CAP must be in the ProtocolDescriptorList. 

• srvRecord must not have changed the PSM value from the PSM value that is currently in the SDDB
version of this service record. 

If the srvRecord parameter is a btgoep service record, then before the SDDB is changed the following
checks are performed. If any of these checks fail, then an IllegalArgumentException is thrown. 

• ServiceClassIDList and ProtocolDescriptorList, the mandatory service attributes for a btgoep service
record, must be present in srvRecord. 

• L2CAP, RFCOMM and OBEX must all be in the ProtocolDescriptorList. 
38



javax.bluetooth
• srvRecord must not have changed the RFCOMM server channel number from the channel number
that is currently in the SDDB version of this service record. 

updateRecord() is not required to ensure that srvRecord is a completely valid service record. It is
the responsibility of the application to ensure that srvRecord follows all of the applicable syntactic and
semantic rules for service record correctness. 

If there is currently no SDDB version of the srvRecord service record, then this method will do nothing.

Parameters:
srvRecord - the new contents to use for the service record in the SDDB

Throws:
NullPointerException - if srvRecord is null

IllegalArgumentException - if the structure of the srvRecord is missing any mandatory 
service attributes, or if an attempt has been made to change any of the values described as fixed.

ServiceRegistrationException - if the local SDDB could not be updated successfully due to 
insufficient disk space, database locks, etc.
39



 javax.bluetooth
javax.bluetooth
RemoteDevice
Declaration
public class RemoteDevice

java.lang.Object
|
+--javax.bluetooth.RemoteDevice

Description
The RemoteDevice class represents a remote Bluetooth device. It provides basic information about a remote 
device including the device’s Bluetooth address and its friendly name.

Member Summary
Constructors

protected RemoteDevice(String)
Creates a Bluetooth device based upon its address.

Methods
public boolean authenticate()

Attempts to authenticate this RemoteDevice.
public boolean authorize(Connection)

Determines if this RemoteDevice should be allowed to continue to access the local 
service provided by the Connection.

public boolean encrypt(Connection, boolean)
Attempts to turn encryption on or off for an existing connection.

public boolean equals(Object)
Determines if two RemoteDevices are equal.

public final String getBluetoothAddress()
Retrieves the Bluetooth address of this device.

public String getFriendlyName(boolean)
Returns the name of this device.

public static Remot-
eDevice

getRemoteDevice(Connection)
Retrieves the Bluetooth device that is at the other end of the Bluetooth Serial Port Pro-
file connection, L2CAP connection, or OBEX over RFCOMM connection provided.

public int hashCode()
Computes the hash code for this object.

public boolean isAuthenticated()
Determines if this RemoteDevice has been authenticated.

public boolean isAuthorized(Connection)
Determines if this RemoteDevice has been authorized previously by the BCC of 
the local device to exchange data related to the service associated with the connection.

public boolean isEncrypted()
Determines if data exchanges with this RemoteDevice are currently being 
encrypted.

public boolean isTrustedDevice()
Determines if this is a trusted device according to the BCC.
40



javax.bluetooth
Constructors

RemoteDevice(String)
protected RemoteDevice(java.lang.String address)

Creates a Bluetooth device based upon its address. The Bluetooth address must be 12 hex characters long.
Valid characters are 0-9, a-f, and A-F. There is no preceding “0x” in the string. For example, valid Blue-
tooth addresses include but are not limited to:
 008037144297
 00af8300cd0b
 014bd91DA8FC

Parameters:
address - the address of the Bluetooth device as a 12 character hex string

Throws:
NullPointerException - if address is null

IllegalArgumentException - if address is the address of the local device or is not a valid 
Bluetooth address

Methods

authenticate()
public boolean authenticate()

throws IOException

Attempts to authenticate this RemoteDevice. Authentication is a means of verifying the identity of a
remote device. Authentication involves a device-to-device challenge and response scheme that requires a
128-bit common secret link key derived from a PIN code shared by both devices. If either side’s PIN code
does not match, the authentication process fails and the method returns false. The method will also return
false if authentication is incompatible with the current security settings of the local device established by
the BCC, if the stack does not support authentication at all, or if the stack does not support authentication
subsequent to connection establishment. 

If this RemoteDevice has previously been authenticated, then this method returns true without
attempting to re-authenticate this RemoteDevice.

Returns: true if authentication is successful; otherwise false

Throws:
IOException - if there are no open connections between the local device and this RemoteDevice

Inherited Member Summary

Methods inherited from class java.lang.Object

getClass, notify, notifyAll, toString, wait, wait, wait
41



 javax.bluetooth
authorize(Connection)
public boolean authorize(javax.microedition.io.Connection conn)

throws IOException

Determines if this RemoteDevice should be allowed to continue to access the local service provided by
the Connection. In Bluetooth, authorization is defined as the process of deciding if device X is allowed
to access service Y. The implementation of the authorize(Connection conn) method asks the
Bluetooth Control Center (BCC) to decide if it is acceptable for RemoteDevice to continue to access a
local service over the connection conn. In devices with a user interface, the BCC is expected to consult
with the user to obtain approval. 

Some Bluetooth systems may allow the user to permanently authorize a remote device for all local services.
When a device is authorized in this way, it is known as a “trusted device” —- see
isTrustedDevice() . 

The authorize() method will also check that the identity of the RemoteDevice can be verified
through authentication. If this RemoteDevice has been authorized for conn previously, then this method
returns true without attempting to re-authorize this RemoteDevice.

Parameters:
conn - the connection that this RemoteDevice is using to access a local service

Returns: true if this RemoteDevice is successfully authenticated and authorized, otherwise false if 
authentication or authorization fails

Throws:
IllegalArgumentException - if conn is not a connection to this RemoteDevice, or if the 
local device initiated the connection, i.e., the local device is the client rather than the server. This 
exception is also thrown if conn was created by RemoteDevice using a scheme other than btspp, 
btl2cap, or btgoep. This exception is thrown if conn is a notifier used by a server to wait for a 
client connection, since the notifier is not a connection to this RemoteDevice.

IOException - if conn is closed

See Also: isTrustedDevice()

encrypt(Connection, boolean)
public boolean encrypt(javax.microedition.io.Connection conn, boolean on)

throws IOException

Attempts to turn encryption on or off for an existing connection. In the case where the parameter on is
true, this method will first authenticate this RemoteDevice if it has not already been authenticated.
Then it will attempt to turn on encryption. If the connection is already encrypted then this method returns
true. Otherwise, when the parameter on is true, either: 

• the method succeeds in turning on encryption for the connection and returns true, or 

• the method was unsuccessful in turning on encryption and returns false. This could happen because
the stack does not support encryption or because encryption conflicts with the user’s security settings
for the device. 

In the case where the parameter on is false, there are again two possible outcomes: 

• encryption is turned off on the connection and true is returned, or 

• encryption is left on for the connection and false is returned. 
42



javax.bluetooth
Encryption may be left on following encrypt(conn, false) for a variety of reasons. The user’s cur-
rent security settings for the device may require encryption or the stack may not have a mechanism to turn
off encryption. Also, the BCC may have determined that encryption will be kept on for the physical link to
this RemoteDevice. The details of the BCC are implementation dependent, but encryption might be left
on because other connections to the same device need encryption. (All of the connections over the same
physical link must be encrypted if any of them are encrypted.) 

While attempting to turn encryption off may not succeed immediately because other connections need
encryption on, there may be a delayed effect. At some point, all of the connections over this physical link
needing encryption could be closed or also have had the method encrypt(conn, false) invoked for
them. In this case, the BCC may turn off encryption for all connections over this physical link.  (The policy
used by the BCC is implementation dependent.) It is recommended that applications do encrypt(conn,
false) once they no longer need encryption to allow the BCC to determine if it can reduce the overhead
on connections to this RemoteDevice. 

The fact that encrypt(conn, false) may not succeed in turning off encryption has very few conse-
quences for applications. The stack handles encryption and decryption, so the application does not have to
do anything different depending on whether the connection is still encrypted or not.

Parameters:
conn - the connection whose need for encryption has changed

on - true attempts to turn on encryption; false attempts to turn off encryption

Returns: true if the change succeeded, otherwise false if it failed

Throws:
IOException - if conn is closed

IllegalArgumentException - if conn is not a connection to this RemoteDevice; if conn 
was created by the client side of the connection using a scheme other than btspp, btl2cap, or 
btgoep (for example, this exception will be thrown if conn was created using the file or http 
schemes.); if conn is a notifier used by a server to wait for a client connection, since the notifier is not 
a connection to this RemoteDevice

equals(Object)
public boolean equals(java.lang.Object obj)

Determines if two RemoteDevices are equal. Two devices are equal if they have the same Bluetooth
device address.

Overrides: java.lang.Object.equals(java.lang.Object) in class java.lang.Object

Parameters:
obj - the object to compare to

Returns: true if both devices have the same Bluetooth address; false if both devices do not have the 
same address; false if obj is null; false if obj is not a RemoteDevice

getBluetoothAddress()
public final java.lang.String getBluetoothAddress()

Retrieves the Bluetooth address of this device. The Bluetooth address will be 12 characters long. Valid
characters are 0-9 and A-F. This method will never return null.

Returns: the Bluetooth address of the remote device
43



 javax.bluetooth
getFriendlyName(boolean)
public java.lang.String getFriendlyName(boolean alwaysAsk)

throws IOException

Returns the name of this device. The Bluetooth specification calls this name the “Bluetooth device name”
or the “user-friendly name”. This method will only contact the remote device if the name is not known or
alwaysAsk is true.

Parameters:
alwaysAsk - if true then the device will be contacted for its name, otherwise, if there exists a 
known name for this device, the name will be returned without contacting the remote device

Returns: the name of the device, or null if the Bluetooth system does not support this feature; if the local 
device is able to contact the remote device, the result will never be null; if the remote device does not 
have a name then an empty string will be returned

Throws:
IOException - if the remote device can not be contacted or the remote device could not provide its 
name

getRemoteDevice(Connection)
public static RemoteDevice getRemoteDevice(javax.microedition.io.Connection conn)

throws IOException

Retrieves the Bluetooth device that is at the other end of the Bluetooth Serial Port Profile connection,
L2CAP connection, or OBEX over RFCOMM connection provided. This method will never return null.

Parameters:
conn - the Bluetooth Serial Port connection, L2CAP connection, or OBEX over RFCOMM 
connection whose remote Bluetooth device is needed

Returns: the remote device involved in the connection

Throws:
IllegalArgumentException - if conn is not a Bluetooth Serial Port Profile connection, 
L2CAP connection, or OBEX over RFCOMM connection; if conn is a 
L2CAPConnectionNotifier, StreamConnectionNotifier, or SessionNotifier

IOException - if the connection is closed

NullPointerException - if conn is null

hashCode()
public int hashCode()

Computes the hash code for this object. This method will return the same value when it is called multiple
times on the same object.

Overrides: java.lang.Object.hashCode() in class java.lang.Object

Returns: the hash code for this object

isAuthenticated()
public boolean isAuthenticated()

Determines if this RemoteDevice has been authenticated. 
44



javax.bluetooth
A device may have been authenticated by this application or another application. Authentication applies to
an ACL link between devices and not on a specific L2CAP, RFCOMM, or OBEX connection. Therefore, if
authenticate() is performed when an L2CAP connection is made to device A, then
isAuthenticated() may return true when tested as part of making an RFCOMM connection to
device A.

Returns: true if this RemoteDevice has previously been authenticated; false if it has not been 
authenticated or there are no open connections between the local device and this RemoteDevice

isAuthorized(Connection)
public boolean isAuthorized(javax.microedition.io.Connection conn)

throws IOException

Determines if this RemoteDevice has been authorized previously by the BCC of the local device to
exchange data related to the service associated with the connection. Both clients and servers can call this
method. However, for clients this method returns false for all legal values of the conn argument.

Parameters:
conn - a connection that this RemoteDevice is using to access a service or provide a service

Returns: true if conn is a server-side connection and this RemoteDevice has been authorized; 
false if conn is a client-side connection, or a server-side connection that has not been authorized

Throws:
IllegalArgumentException - if conn is not a connection to this RemoteDevice; if conn 
was not created using one of the schemes btspp, btl2cap, or btgoep; or if conn is a notifier used 
by a server to wait for a client connection, since the notifier is not a connection to this 
RemoteDevice.

IOException - if conn is closed

isEncrypted()
public boolean isEncrypted()

Determines if data exchanges with this RemoteDevice are currently being encrypted. 

Encryption may have been previously turned on by this or another application. Encryption applies to an
ACL link between devices and not on a specific L2CAP, RFCOMM, or OBEX connection. Therefore, if
encrypt() is performed with the on parameter set to true when an L2CAP connection is made to
device A, then isEncrypted() may return true when tested as part of making an RFCOMM connec-
tion to device A.

Returns: true if data exchanges with this RemoteDevice are being encrypted; false if they are not 
being encrypted, or there are no open connections between the local device and this RemoteDevice

isTrustedDevice()
public boolean isTrustedDevice()

Determines if this is a trusted device according to the BCC.

Returns: true if the device is a trusted device, otherwise false
45



 javax.bluetooth
javax.bluetooth
ServiceRecord
Declaration
public interface ServiceRecord

Description
The ServiceRecord interface describes characteristics of a Bluetooth service. A ServiceRecord 
contains a set of service attributes, where each service attribute is an (ID, value) pair. A Bluetooth attribute ID is 
a 16-bit unsigned integer, and an attribute value is a DataElement. 

The structure and use of service records is specified by the Bluetooth specification in the Service Discovery 
Protocol (SDP) document. Most of the Bluetooth Profile specifications also describe the structure of the service 
records used by the Bluetooth services that conform to the profile. 
An SDP Server maintains a Service Discovery Database (SDDB) of service records that describe the services 
on the local device. Remote SDP clients can use the SDP to query an SDP server for any service records of 
interest. A service record provides sufficient information to allow an SDP client to connect to the Bluetooth 
service on the SDP server’s device. 
ServiceRecords are made available to a client application via an argument of the 
servicesDiscovered method of the DiscoveryListener interface. ServiceRecords are 
available to server applications via the method getRecord() on LocalDevice. 
There might be many service attributes in a service record, and the SDP protocol makes it possible to specify 
the subset of the service attributes that an SDP client wants to retrieve from a remote service record. The 
ServiceRecord interface treats certain service attribute IDs as default IDs, and, if present, these service 
attributes are automatically retrieved during service searches. 
The Bluetooth Assigned Numbers document (http://www.bluetooth.org/assigned-numbers/sdp.htm) defines a 
large number of service attribute IDs. Here is a subset of the most common service attribute IDs and their types. 

Attribute Name Attribute ID Attribute Value Type

ServiceRecordHandle 0x0000 32-bit unsigned integer

ServiceClassIDList 0x0001 DATSEQ of UUIDs

ServiceRecordState 0x0002 32-bit unsigned integer

ServiceID 0x0003 UUID

ProtocolDescriptorList 0x0004 DATSEQ of DATSEQ of UUID and optional parame-
ters

BrowseGroupList 0x0005 DATSEQ of UUIDs

LanguageBasedAttributeIDList 0x0006 DATSEQ of DATSEQ triples

ServiceInfoTimeToLive 0x0007 32-bit unsigned integer

ServiceAvailability 0x0008 8-bit unsigned integer

BluetoothProfileDescriptorList 0x0009 DATSEQ of DATSEQ pairs
46



javax.bluetooth
The following table lists the common string-valued attribute ID offsets used in a ServiceRecord. These 
offsets must be added to a base value to obtain the actual service ID. (For more information, see the Service 
Discovery Protocol Specification located in the Bluetooth Core Specification at http://www.bluetooth.com/dev/
specifications.asp). 

DocumentationURL 0x000A URL

ClientExecutableURL 0x000B URL

IconURL 0x000C URL

VersionNumberList 0x0200 DATSEQ of 16-bit unsigned integers

ServiceDatabaseState 0x0201 32-bit unsigned integer

Attribute Name Attribute ID Offset Attribute Value Type

ServiceName 0x0000 String

ServiceDescription 0x0001 String

ProviderName 0x0002 String

Member Summary
Fields

public static final AUTHENTICATE_ENCRYPT
Authentication and encryption are required for connections to this service.

public static final AUTHENTICATE_NOENCRYPT
Authentication is required for connections to this service, but not encryption.

public static final NOAUTHENTICATE_NOENCRYPT
Authentication and encryption are not needed on a connection to this service.

Methods
public int getAttributeIDs()

Returns the service attribute IDs whose value could be retrieved by a call to get-
AttributeValue().

public DataElement getAttributeValue(int)
Returns the value of the service attribute ID provided it is present in the service 
record, otherwise this method returns null.

public String getConnectionURL(int, boolean)
Returns a String including optional parameters that can be used by a client to connect 
to the service described by this ServiceRecord.

public RemoteDevice getHostDevice()
Returns the remote Bluetooth device that populated the service record with attribute 
values.

public boolean populateRecord(int[])
Retrieves the values by contacting the remote Bluetooth device for a set of service 
attribute IDs of a service that is available on a Bluetooth device.

public boolean setAttributeValue(int, DataElement)
Modifies this ServiceRecord to contain the service attribute defined by the 
attribute-value pair (attrID, attrValue).
47



 javax.bluetooth
Fields

AUTHENTICATE_ENCRYPT
public static final int AUTHENTICATE_ENCRYPT

Authentication and encryption are required for connections to this service. Used with getConnection-
URL() method. 

AUTHENTICATE_ENCRYPT is set to the constant value 0x02 (2).

See Also: getConnectionURL(int, boolean)

AUTHENTICATE_NOENCRYPT
public static final int AUTHENTICATE_NOENCRYPT

Authentication is required for connections to this service, but not encryption. It is OK for encryption to be
either on or off for the connection. Used with getConnectionURL() method. 

AUTHENTICATE_NOENCRYPT is set to the constant value 0x01 (1).

See Also: getConnectionURL(int, boolean)

NOAUTHENTICATE_NOENCRYPT
public static final int NOAUTHENTICATE_NOENCRYPT

Authentication and encryption are not needed on a connection to this service. Used with get-
ConnectionURL() method. 

NOAUTHENTICATE_NOENCRYPT is set to the constant value 0x00 (0).

See Also: getConnectionURL(int, boolean)

Methods

getAttributeIDs()
public int[] getAttributeIDs()

Returns the service attribute IDs whose value could be retrieved by a call to getAttributeValue().
The list of attributes being returned is not sorted and includes default attributes.

Returns: an array of service attribute IDs that are in this object and have values for them; if there are no 
attribute IDs that have values, this method will return an array of length zero.

See Also: getAttributeValue(int)

public void setDeviceServiceClasses(int)
Used by a server application to indicate the major service class bits that should be 
activated in the server’s DeviceClass when this ServiceRecord is added to 
the SDDB.

Member Summary
48



javax.bluetooth
getAttributeValue(int)
public DataElement getAttributeValue(int attrID)

Returns the value of the service attribute ID provided it is present in the service record, otherwise this
method returns null.

Parameters:
attrID - the attribute whose value is to be returned

Returns: the value of the attribute ID if present in the service record, otherwise null

Throws:
IllegalArgumentException - if attrID is negative or greater than or equal to 216

getConnectionURL(int, boolean)
public java.lang.String getConnectionURL(int requiredSecurity, boolean mustBeMaster)

Returns a String including optional parameters that can be used by a client to connect to the service
described by this ServiceRecord. The return value can be used as the first argument to Connec-
tor.open(). In the case of a Serial Port service record, this string might look like “btspp://
0050CD00321B:3;authenticate=true;encrypt=false;master=true”, where “0050CD00321B” is the Blue-
tooth address of the device that provided this ServiceRecord, “3” is the RFCOMM server channel
mentioned in this ServiceRecord, and there are three optional parameters related to security and mas-
ter/slave roles. 

If this method is called on a ServiceRecord returned from LocalDevice.getRecord(), it will
return the connection string that a remote device will use to connect to this service.

Parameters:
requiredSecurity - determines whether authentication or encryption are required for a 
connection

mustBeMaster - true indicates that this device must play the role of master in connections to this 
service; false indicates that the local device is willing to be either the master or the slave

Returns: a string that can be used to connect to the service or  null if the ProtocolDescriptorList in this 
ServiceRecord is not formatted according to the Bluetooth specification

Throws:
IllegalArgumentException - if requiredSecurity is not one of the constants 
NOAUTHENTICATE_NOENCRYPT, AUTHENTICATE_NOENCRYPT, or 
AUTHENTICATE_ENCRYPT

See Also: NOAUTHENTICATE_NOENCRYPT, AUTHENTICATE_NOENCRYPT, 
AUTHENTICATE_ENCRYPT

getHostDevice()
public RemoteDevice getHostDevice()

Returns the remote Bluetooth device that populated the service record with attribute values. It is important
to note that the Bluetooth device that provided the value might not be reachable anymore, since it can
move, turn off, or change its security mode denying all further transactions.

Returns: the remote Bluetooth device that populated the service  record, or null if the local device 
populated this ServiceRecord
49



 javax.bluetooth
populateRecord(int[])
public boolean populateRecord(int[] attrIDs)

throws IOException

Retrieves the values by contacting the remote Bluetooth device for a set of service attribute IDs of a service
that is available on a Bluetooth device. (This involves going over the air and contacting the remote device
for the attribute values.) The system might impose a limit on the number of service attribute ID values one
can request at a time. Applications can obtain the value of this limit as a String by calling Local-
Device.getProperty(“bluetooth.sd.attr.retrievable.max”). The method is block-
ing and will return when the results of the request are available. Attribute IDs whose values could be
obtained are added to this service record. If there exist attribute IDs for which values are retrieved this will
cause the old values to be overwritten. If the remote device cannot be reached, an IOException will be
thrown.

Parameters:
attrIDs - the list of service attributes IDs whose value are to be retrieved; the number of attributes 
cannot exceed the property bluetooth.sd.attr.retrievable.max; the attributes in the 
request must be legal, i.e. their values are in the range of [0, 216-1]. The input attribute IDs can include 
attribute IDs from the default attribute set too.

Returns: true if the request was successful in retrieving values for some or all of the attribute IDs; 
false if it was unsuccessful in retrieving any values

Throws:
IOException - if the local device is unable to connect to the remote Bluetooth device that was the 
source of this ServiceRecord; if this ServiceRecord was deleted from the SDDB of the remote 
device

IllegalArgumentException - if the size of attrIDs exceeds the system specified limit as 
defined by bluetooth.sd.attr.retrievable.max; if the attrIDs array length is zero; if 
any of their values are not in the range of [0, 216-1]; if attrIDs has duplicate values

NullPointerException - if attrIDs is null

RuntimeException - if this ServiceRecord describes a service on the local device rather than 
a service on a remote device

setAttributeValue(int, DataElement)
public boolean setAttributeValue(int attrID, DataElement attrValue)

Modifies this ServiceRecord to contain the service attribute defined by the attribute-value pair
(attrID, attrValue). If the attrID does not exist in the ServiceRecord, this attribute-value
pair is added to this ServiceRecord object. If the attrID is already in this ServiceRecord, the
value of the attribute is changed to attrValue. If attrValue is null, the attribute with the attribute
ID of attrID is removed from this ServiceRecord object. If attrValue is null and attrID
does not exist in this object, this method will return false. 

This method makes no modifications to a service record in the SDDB. In order for any changes made by
this method to be reflected in the SDDB, a call must be made to the acceptAndOpen() method of the
associated notifier to add this ServiceRecord to the SDDB for the first time, or a call must be made to
the updateRecord() method of LocalDevice to modify the version of this ServiceRecord that
is already in the SDDB. 

This method prevents the ServiceRecordHandle from being modified by throwing an Illegal-
ArgumentException.
50



javax.bluetooth
Parameters:
attrID - the service attribute ID

attrValue - the DataElement which is the value of the service attribute

Returns: true if the service attribute was successfully added, removed, or modified; false if 
attrValue is null and attrID is not in this object

Throws:
IllegalArgumentException - if attrID does not represent a 16-bit unsigned integer; if 
attrID is the value of ServiceRecordHandle (0x0000)

RuntimeException - if this method is called on a ServiceRecord that was created by a call to 
DiscoveryAgent.searchServices()

setDeviceServiceClasses(int)
public void setDeviceServiceClasses(int classes)

Used by a server application to indicate the major service class bits that should be activated in the server’s
DeviceClass when this ServiceRecord is added to the SDDB. When client devices do device dis-
covery, the server’s DeviceClass is provided as one of the arguments of the deviceDiscovered
method of the DiscoveryListener interface. Client devices can consult the DeviceClass of the
server device to get a general idea of the kind of device this is (e.g., phone, PDA, or PC) and the major ser-
vice classes it offers (e.g., rendering, telephony, or information). A server application should use the set-
DeviceServiceClasses method to describe its service in terms of the major service classes. This
allows clients to obtain a DeviceClass for the server that accurately describes all of the services being
offered. 

When acceptAndOpen() is invoked for the first time on the notifier associated with this Service-
Record, the classes argument from the setDeviceServiceClasses method is OR’ed with the
current setting of the major service class bits of the local device. The OR operation potentially activates
additional bits. These bits may be retrieved by calling getDeviceClass() on the LocalDevice
object. Likewise, a call to LocalDevice.updateRecord() will cause the major service class bits to
be OR’ed with the current settings and updated. 

The documentation for DeviceClass gives examples of the integers that describe each of the major ser-
vice classes and provides a URL for the complete list. These integers can be used individually or OR’ed
together to describe the appropriate value for classes. 

Later, when this ServiceRecord is removed from the SDDB, the implementation will automatically
deactivate the device bits that were activated as a result of the call to setDeviceServiceClasses.
The only exception to this occurs if there is another ServiceRecord that is in the SDDB and set-
DeviceServiceClasses has been sent to that other ServiceRecord to request that some of the
same bits be activated.

Parameters:
classes - an integer whose binary representation indicates the major service class bits that should be 
activated

Throws:
IllegalArgumentException - if classes is not an OR of one or more of the major service 
class integers in the Bluetooth Assigned Numbers document. While Limited Discoverable Mode is 
included in this list of major service classes, its bit is activated by placing the device in Limited 
Discoverable Mode (see the GAP specification), so if bit 13 is set this exception will be thrown.
51



 javax.bluetooth
RuntimeException - if the ServiceRecord receiving the message was obtained from a remote 
device
52



javax.bluetooth
javax.bluetooth
ServiceRegistrationException
Declaration
public class ServiceRegistrationException extends java.io.IOException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.io.IOException

|
+--javax.bluetooth.ServiceRegistrationException

Description
The ServiceRegistrationException is thrown when there is a failure to add a service record to the 
local Service Discovery Database (SDDB) or to modify an existing service record in the SDDB. The failure 
could be because the SDDB has no room for new records or because the modification being attempted to a 
service record violated one of the rules about service record updates. This exception will also be thrown if it was 
not possible to obtain an RFCOMM server channel needed for a btspp service record.

Constructors

ServiceRegistrationException()
public ServiceRegistrationException()

Member Summary
Constructors

public ServiceRegistrationException()
Creates a ServiceRegistrationException without a detailed message.

public ServiceRegistrationException(String)
Creates a ServiceRegistrationException with a detailed message.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from class java.lang.Throwable

getMessage, printStackTrace, toString
53



 javax.bluetooth
Creates a ServiceRegistrationException without a detailed message.

ServiceRegistrationException(String)
public ServiceRegistrationException(java.lang.String msg)

Creates a ServiceRegistrationException with a detailed message.

Parameters:
msg - the reason for the exception
54



javax.bluetooth
javax.bluetooth
UUID
Declaration
public class UUID

java.lang.Object
|
+--javax.bluetooth.UUID

Description
The UUID class defines universally unique identifiers. These 128-bit unsigned integers are guaranteed to be 
unique across all time and space. Accordingly, an instance of this class is immutable. The Bluetooth 
specification provides an algorithm describing how a 16-bit or 32-bit UUID could be promoted to a 128-bit 
UUID. Accordingly, this class provides an interface that assists applications in creating 16-bit, 32-bit, and 128-
bit long UUIDs. The methods supported by this class allow equality testing of two UUID objects. 

The Bluetooth Assigned Numbers document (http://www.bluetooth.org/assigned-numbers/sdp.htm) defines a 
large number of UUIDs for protocols and service classes. The table below provides a short list of the most 
common UUIDs defined in the Bluetooth Assigned Numbers document. 

Name Value Size

Base UUID Value (Used in promoting 16-bit and 32-
bit UUIDs to 128-bit UUIDs)

0x0000000000001000800000805F9B34FB 128-bit

SDP 0x0001 16-bit

RFCOMM 0x0003 16-bit

OBEX 0x0008 16-bit

HTTP 0x000C 16-bit

L2CAP 0x0100 16-bit

BNEP 0x000F 16-bit

Serial Port 0x1101 16-bit

ServiceDiscoveryServerServiceClassID 0x1000 16-bit

BrowseGroupDescriptorServiceClassID 0x1001 16-bit

PublicBrowseGroup 0x1002 16-bit

OBEX Object Push Profile 0x1105 16-bit

OBEX File Transfer Profile 0x1106 16-bit

Personal Area Networking User 0x1115 16-bit

Network Access Point 0x1116 16-bit

Group Network 0x1117 16-bit
55



 javax.bluetooth
Constructors

UUID(long)
public UUID(long uuidValue)

Creates a UUID object from long value uuidValue. A UUID is defined as an unsigned integer whose
value can range from [0 to 2128-1]. However, this constructor allows only those values that are in the range
of [0 to 232 -1]. Negative values and values in the range of [232, 263 -1] are not allowed and will cause an
IllegalArgumentException to be thrown.

Parameters:
uuidValue - the 16-bit or 32-bit value of the UUID

Throws:
IllegalArgumentException - if uuidValue is not in the range [0, 232 -1]

UUID(String, boolean)
public UUID(java.lang.String uuidValue, boolean shortUUID)

Creates a UUID object from the string provided. The characters in the string must be from the hexadecimal
set [0-9, a-f, A-F]. It is important to note that the prefix “0x” generally used for hex representation of num-
bers is not allowed. If the string does not have characters from the hexadecimal set, an exception will be
thrown. The string length has to be positive and less than or equal to 32. A string length that exceeds 32 is
illegal and will cause an exception. Finally, a null input is also considered illegal and causes an exception. 

If shortUUID is true, uuidValue represents a 16-bit or 32-bit UUID. If uuidValue is in the range
0x0000 to 0xFFFF then this constructor will create a 16-bit UUID. If uuidValue is in the range

Member Summary
Constructors

public UUID(long)
Creates a UUID object from long value uuidValue.

public UUID(String, boolean)
Creates a UUID object from the string provided.

Methods
public boolean equals(Object)

Determines if two UUIDs are equal.
public int hashCode()

Computes the hash code for this object.
public String toString()

Returns the string representation of the 128-bit UUID object.

Inherited Member Summary

Methods inherited from class java.lang.Object

getClass, notify, notifyAll, wait, wait, wait
56



javax.bluetooth
0x000010000 to 0xFFFFFFFF, then this constructor will create a 32-bit UUID. Therefore, uuidValue
may only be 8 characters long. 

On the other hand, if shortUUID is false, then uuidValue represents a 128-bit UUID. Therefore,
uuidValue may only be 32 character long

Parameters:
uuidValue - the string representation of a 16-bit, 32-bit or 128-bit UUID

shortUUID - indicates the size of the UUID to be constructed; true is used to indicate short UUIDs, 
i.e. either 16-bit or 32-bit; false indicates an 128-bit UUID

Throws:
NumberFormatException - if uuidValue has characters that are not defined in the hexadecimal 
set [0-9, a-f, A-F]

IllegalArgumentException - if uuidValue length is zero; if shortUUID is true and 
uuidValue’s length is greater than 8; if shortUUID is false and uuidValue’s length is greater 
than 32

NullPointerException - if uuidValue is null

Methods

equals(Object)
public boolean equals(java.lang.Object value)

Determines if two UUIDs are equal. They are equal if their 128 bit values are the same. This method will
return false if value is null or is not a UUID object.

Overrides: java.lang.Object.equals(java.lang.Object) in class java.lang.Object

Parameters:
value - the object to compare to

Returns: true if the 128 bit values of the two objects are equal, otherwise false

hashCode()
public int hashCode()

Computes the hash code for this object. This method retains the same semantic contract as defined in the
class java.lang.Object while overriding the implementation.

Overrides: java.lang.Object.hashCode() in class java.lang.Object

Returns: the hash code for this object

toString()
public java.lang.String toString()

Returns the string representation of the 128-bit UUID object. The string being returned represents a UUID
that contains characters from the hexadecimal set, [0-9, A-F]. It does not include the prefix “0x” that is gen-
erally used for hex representation of numbers. The return value will never be null.

Overrides: java.lang.Object.toString() in class java.lang.Object

Returns: the string representation of the UUID
57



 javax.bluetooth
58


	javax.bluetooth
	BluetoothConnectionException
	BluetoothStateException
	DataElement
	DeviceClass
	DiscoveryAgent
	DiscoveryListener
	L2CAPConnection
	L2CAPConnectionNotifier
	LocalDevice
	RemoteDevice
	ServiceRecord
	ServiceRegistrationException
	UUID


